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ABSTRACT 

As research instruments of large information capacities become a reality, automated 

systems for intelligent data analysis become a necessity. Scientific archives containing 

huge volumes of data preclude manual manipulation or intervention and require 

automated exploration and mining that can at least pre-classify information in categories. 

The large dataset from the radio plasma imager (RPI) instrument onboard the IMAGE 

satellite shows a critical need for such exploration in order to identify and archive 

features of interest in the volumes of visual information. In this research we have 

developed such a pre-classifier through a model of pre-attentive vision capable of 

detecting and extracting traces of echoes from the RPI plasmagrams.   

The overall design of our model complies with Marr’s paradigm of vision where 

elements of increasing perceptual strength are built bottom up under the Gestalt 

constraints of good continuation and smoothness. The specifics of the RPI data, however, 

demanded extension of this paradigm to achieve greater robustness for signature analysis. 

Our pre-attentive model now employs a feedback neural network that refines alignment 

of the oriented edge elements (edgels) detected in the plasmagram image by subjecting 

them to collective global-scale optimization. The level of interaction between the oriented 

edgels is determined by their distance and mutual orientation in accordance with the Yen 

and Finkel model of the striate cortex that encompasses findings in psychophysical 

studies of human vision. An additional effort has been made to pre-process the raw image 
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data to eliminate noise and to detect, interpret and remove the resonance signatures that 

resulted from the local response of the plasma to the RPI signal. 

The developed models have been implemented in an operational system 

“CORPRAL” (Cognitive Online Rpi Plasmagram Ranking Algorithm) that currently 

scans daily submissions of the RPI plasmagrams for the presence of echo traces. 

Qualifying plasmagrams are tagged in the mission database, making them available for a 

variety of queries. An analysis of the performance of CORPRAL is given and directions 

for future research are outlined.  
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CHAPTER 1. INTRODUCTION 

With the growing detailed knowledge comes an increased sophistication of our 

exploration techniques. We deploy scientific experiments of greater complexity and build 

research instruments of higher information output, all in the name of gaining further 

insight into the universe. Often, however, the information explosion we ignite turns into a 

tedious, unfathomable data avalanche. In many applications, ranging from a multi-

terabyte astronomical sky survey to the ever-growing imagery archive produced by the 

high energy particle accelerators, the incoming flow of scientific data would demand 

humanly impossible effort to explore and comprehend if it were not for assistance of the 

Intelligent Systems (IS). 

Many information-rich scientific projects spawn the IS applications that establish an 

automated clearinghouse for dispersed and disorganized data. The computer plays a 

powerful and enabling role in those projects where the size of dataset precludes manual 

processing. The IS applications that deal with images are perhaps the most sophisticated 

ones because of the need to model the intricate process of visual information processing 

in the brain. While a wide range of disciplines such as biology, physics, mathematics, 

computer science, and psychology have offered a great variety of concepts to our 

understanding of visual perception, a large gap still exists between the lower level of 

vision as described by the neurobiology of the retina cells and brain cortex, and the upper 

level of such brain functions as memory and learning. Lack of this understanding became 

the stumbling point for a real-world IS project that was started in order to automatically 
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classify and sort images from the Radio Plasma Imager (RPI) [Reinisch et al., 2000], a 

radar instrument onboard NASA’s IMAGE spacecraft [Burch, 2000]. The RPI makes 

snapshots of plasma conditions in the magnetosphere of the Earth at a rate of ~600 

images per day. Exploration of an early-vision model capable of detecting signatures in 

the RPI images is the topic of this thesis. 

The early vision extracts salient cues from images without willful concentration of 

attention on the image elements, and for that reason is often called pre-attentive. Pre-

attentive vision effectively “pops up” contours of objects in the field of view. Existing 

model descriptions of the pre-attentive vision are based on the concept of reductionism 

that explains behavior of a system in terms of the simpler subsystems comprising it. 

Known since the late 1970s as the Marr’s paradigm of vision [Marr and Nishihara, 1978], 

this reductionist approach builds a pyramid of perception in a bottom-up fashion, where 

each new level holds visual elements of higher perceptual strength and lower levels are 

unaware of considerations happening at the higher levels. Advancement from level to 

level in the Marr’s pyramid is often referred to as perceptual grouping, which is 

governed by Gestalt principles of perception [Rock and Palmer, 1990]. Though largely 

simplified, the pyramid model is in a good agreement with in vitro biophysical studies of 

the eye retina and brain cortex cells responding to simple shape stimuli such as line 

segments. However, in vivo studies have shown that visual system cells display 

seemingly chaotic and highly irregular behavior [Holt et al., 1996]. It is the goal here to 

investigate this process in a greater detail by placing the early-vision model in the 

framework of neurodynamic organization, where collective interaction of neurons 

optimizes segmentation of the contours.  
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1.1. Scope and Goals 

The goal of this thesis is to contribute to the understanding of pre-attentive vision by 

investigating an artificial neural network algorithm (ANNA) for contour segmentation. 

ANNA is a feedback neural network with a sigmoid transfer function of the neurons and 

network evolving procedure based on the mean field theory [Peterson and Anderson, 

1987] that employs a Gestalt-compliant interaction pattern similar to the Yen and Finkel 

[1998] model of the brain cortex. Although compliance with the Gestalt law of 

perception is a target for many models of perceptual grouping, its implementations within 

the neurodynamic framework to the real-world images are rare because of a high 

computational demand. The ANNA model is explored by identifying its performance 

issues on synthetic and actual RPI data and heuristically shaping its energy function and 

evolving process for optimal performance. Ultimately, ANNA is the central component 

of a Cognitive Online Rpi Plasmagram Rating Algorithm (CORPRAL) [Galkin et al., 

2004b] for signature extraction from the RPI images. Ratings provided by the CORPRAL 

are instrumental to efficient data exploration by quering the RPI mission database 

currently holding nearly 1,000,000 images. Other important issues of building the Marr’s 

pyramid layers of the CORPRAL that make our approach feasible are discussed. These 

include principles of feature selection for perceptual grouping, as well as an independent 

topic of detection and matching of the plasma resonances in RPI image data [Galkin et 

al., 2004a], which is done prior to the contour segmentation to simplify the task. The last 

part of the thesis presents the overall CORPRAL performance results and outlines future 

work. 
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1.2. Thesis Contributions 

This thesis takes advantage of a cross-disciplinary approach to the difficult, 

scientifically significant problem of feature extraction from the imagery data of highly 

variable content and quality. Most parts of the developed pre-attentive vision model 

discussed earlier were previously known from other studies in related areas. They were 

brought together to create an innovative perceptual system that draws its strengths from 

established concepts in psychology, biology, mathematics, remote sensing, plasma 

physics, and computer science. The thesis research expands the classic Marr’s classic 

vision paradigm by adding a previously-known concept, rotors, as a new perceptual layer 

in the pyramid. In the rotor layer, the oriented edge elements (edgels) detected in the 

image are subjected to a collective global-scale optimization to correct imperfections of 

their orientation originally determined by a local-scale process. Letting oriented edgels 

(rotors) change their orientation under collective influence of surrounding rotors is a 

well-known concept that can be traced back to the magnetic spin systems in physics. The 

principles of rotor interaction, however, remained rather simple over the years; enhancing 

them with the modern understanding of cell interaction in the brain cortex is another 

important contribution of the thesis.  

The benefits and viability of the proposed techniques are shown using the operational 

system for plasmagram analysis, CORPRAL, which applies the pre-attentive model to 

the RPI plasmagrams. Special attention is paid to pre-processing of plasmagrams based 

on the principles of signal detection and resonance interpretation. The thesis contributed 

notably to the task of the automated matching of the plasma resonance signatures to their 
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theoretical counterparts. A new cumulative-median filter was developed for enhancing 

the contrast of resonance signatures, and a resonance detector was developed to register 

and evaluate the signatures prior to matching them to the theoretical model. The 

resonance matching algorithm is implemented in the flagship data visualization system 

for RPI data, BinBrowser, to aid the process of plasmagram interpretation. 

The final contribution of the thesis is the data exploration results obtained by the 

CORPRAL system that works online with the RPI database holding over 800,000 

plasmagram images. The subset of plasmagrams identified by CORPRAL as containing 

traces is made available for remote queries from the BinBrowser workstations. 

1.3. Plan 

The first chapter discusses the motivation for development of intelligent systems that 

help to organize and explore large datasets collected by scientific applications. It then 

describes the essence of the thesis research and defines its scope, goals, and contributions 

in relation to the concept of automated data exploration and the need for better 

understanding how the early vision functions. 

 The second chapter gives the description of the Radio Plasma Imager and specifics 

of its dataset that motivated this research. 

Chapter 3 gives an overview of the existing contour extraction approaches based on 

the Marr paradigm of vision. The review distinguishes between local and global 

techniques and summarizes the main results of previous research that serves as the 
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foundation for this work: the Gestalt-compliant interaction of directed edge elements and 

feedback neural network optimizing the alignment of rotors. 

In Chapter 4 the artificial neural network algorithm (ANNA) is introduced as a 

feedback neural network with sigmoid transfer function and the mean field evolving 

process that aligns rotors along the contours in the image. The ANNA uses Gestalt laws 

of perception in the design of the rotor interaction pattern similar to many other models 

of perceptual grouping. The modifications to the interaction pattern are then discussed 

that are necessary to provide robustness of the alignment algorithm to the specifics of the 

RPI image data. This\also works to avoid the local minima of the energy function during 

the evolving of the network. The need for pre-processing of features is then discussed in 

the context of the computational requirements imposed by the ANNA operations. The 

analysis of ANNA performance is then made on synthetic and actual RPI images. 

The fifth chapter introduces a related topic of the detection and matching of the 

plasma resonance signatures in the RPI image data, an operation done prior to contour 

segmentation to simplify the ANNA processing. The resonance processing algorithm 

includes a signature detector and an automatching algorithm based on the existing 

relations between several resonance frequencies. 

Chapter 6 presents CORPRAL, a software tool for signature extraction in the RPI 

images based on the ANNA model, including implementation, first results and 

performance issues of the CORPRAL. 

Chapter 7 summarizes the main results and discusses future research directions. 
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CHAPTER 2. RADIO PLASMA IMAGER DATASET 

Our study was motivated and influenced by the need to build an intelligent system for 

the automated exploration of imagery data collected by the Radio Plasma Imager (RPI) 

designed to locally and remotely probe the plasma in the magnetosphere surrounding the 

Earth. The chapter briefly describes the RPI instrument and highlights specifics of its 

operations and data. Chapter 4 discusses in further detail the unique features of the RPI 

dataset that affected design of the pre-attentive vision model for signature extraction in 

the RPI images. 

2.1. Radio Plasma Imager 

The Radio Plasma Imager aboard the IMAGE spacecraft is a radar with the direction 

finding capability, designed to probe the plasma of the Earth’s magnetosphere at near and 

far ranges (Figure 2.1).  

 

Figure 2.1. Earth’s magnetosphere and IMAGE orbit 
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The fundamental objective of RPI is to detect responses of surrounding plasma to the 

transmitted radio signals and to infer characteristics of the magnetospheric plasma 

environment from the detected signatures. RPI can be thought of as a point source of 

radio waves that illuminates the space around it using short pulse and then detects echoes 

arriving from various regions of ionization in the magnetosphere, plasmasphere and 

ionosphere, as well as plasma irregularities of various scale sizes. For the radio signal to 

reflect at a remote location and return to its origin, specific conditions have to be met. 

Not only must the frequency of the signal match the local plasma frequency in the 

reflection area, but also the plasma density gradients have to satisfy certain geometrical 

criteria. It is important to recognize that RPI, in its active sounding modes, is the radar of 

opportunity that “sees” targets only sporadically on any particular orbit.  The need to 

search for features in the RPI dataset has been the rationale for intensive mission 

planning, data mining and signature characterization effort. 

2.2. RPI Plasmagrams  

To remotely sense conditions of the surrounding plasma, RPI employs a stepped 

frequency radio sounding concept that has been successfully practiced in a variety of 

applications, in particular the ionospheric sounder [Reinisch, 1996]. To search for the 

reflected signals, the RPI probes a specified number of the sounding frequencies by 

transmitting a pulse and sampling, for each frequency, the amplitude of receiver voltage 

at a specified number of delay times after the pulse transmission (Figure 2.2).  
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Figure 2.2. Echo detection concept in RPI 

The echo travel time is usually converted to the so-called virtual range to the reflector 

using the assumption that the signal travels at the speed of light. For brevity, the virtual 

range is often referred to as “range” in this text. Measurements of the amplitude at each 

of the sampled virtual ranges present the first, simplest layer of the RPI data roster. 

Figure 2.3 shows an example plot of the amplitudes in the frame of sounding frequency 

versus virtual range, a technique that has been in practice since the first experiments with 

the swept frequency sounding of the ionosphere in the 1930s.  
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Figure 2.3. Plasmagram representation of the RPI echoes with traces 
and resonance signatures as indicated 

Plots of RPI amplitudes in the frequency-range frame are called plasmagrams. The 

example plasmagram shown in Figure 2.4 is plotted using the BinBrowser visualization 

tool [Galkin et al., 2001]. As can be seen in this particular plasmagram taken on March 

20, 2002, 04:28 UT, the plasma responses to the RPI transmitter signal in two basic ways, 

(a) reflecting the signal from a remote location back to its origin, and (b) sustaining short-

range plasma waves at characteristic frequencies, resonances.  

2.2.1. Plasmagram Traces 

Individual echoes, when viewed in the plasmagram representation, typically form 

curves of various shapes and lengths, called traces. Each individual plasmagram trace is 
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x-monotonic, i.e., for each frequency only one range value exists. The traces are not y-

monotonic, though, and the same range value may appear twice (or more) in a trace.  

Interpretation of the traces found in the RPI plasmagrams still presents a considerable 

difficulty because of the experiment’s novelty. Preliminary investigation showed that the 

traces can be classified in at least three basic categories: 

1. Wave polarization a 

a. O 

b. X 

c. Z 

2. Wave propagation mechanism b 

a. Direct 

b. Field-aligned propagation (FAP) 

3. Reflector c  

                                                   
a  For RPI electromagnetic waves, the space plasma in the Earth’s magnetic field is an anisotropic medium 

that causes splitting of the RPI signal into the left- and right-circular polarized waves traveling with 
different phase and group velocities in the medium and yielding different traces on the plasmagram. The 
left circular and right circular waves (with respect to the geomagnetic field) are referred to as ordinary 
(O), and extraordinary (X) polarizations, whereas their combined mode involving mode transformations 
is called Z-trace. 

b  Propagation of the electromagnetic waves in the magnetized plasma of the Earth has been studied 
extensively to identify two major propagation mechanisms of special interest to RPI, (1) direct 
(involving refraction) and (2) field aligned (following the curve of Earth’s magnetic field lines [Reinisch 
et al., 2001]). The physical mechanism causing waves to deviate from the straight line is explained in 
terms of guided propagation. 

c  The conditions for RPI signal to reflect and return to the spacecraft location may be satisfied in a variety 
of plasma structures of global scale. Those are typically either abrupt gradients of plasma density 
(plasmapause, magnetopause, cusp), or plasma of smoothly increasing density (plasmasphere, 
ionosphere), where the local plasma frequency eventually matches the sounding frequency causing the 
refractive index to become zero and wave to reflect.  
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a. Plasmasphere 

b. Plasmapause 

c. Ionosphere 

d. Polar Cap area 

e. Cusp 

f. Magnetopause 

Finding plasmagrams with traces and interpretation of the found traces constitute a 

significant part of the RPI science data analysis. This process usually involves manual 

screening of the plasmagrams and extraction of the traces, a tedious effort often requiring 

hours to process one day of raw data.  

2.2.2. Plasmagram Resonances 

A radio transmitter immersed in the plasma is capable of stimulating short-range 

plasma-wave echoes and plasma emissions when its sounding frequency matches one of 

the characteristic frequencies of the plasma, often called resonance frequencies, or simply 

resonances. Typical resonance signatures have been observed by a number of space 

missions carrying a topside ionosonde or a relaxation sounder (see Muldrew [1972] for a 

representative review). Detection of stimulated resonances and wave cutoffs in the radio 

sounding data provides a measurement of local plasma density and magnetic field 

intensity that has demonstrated an accuracy and diagnostic potential superior to what 

conventional magnetometers and density probes are able to achieve.  

The resonance signatures appear in plasmagrams as the vertical line segments 

extending upward from zero virtual range (see Figure 2.3), each corresponding to a 
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particular resonant response of the local plasma to the transmitter excitation. Five major 

types of resonances in the RPI plasmagrams have been identified, all pertaining to 

oscillations of the plasma electrons, observed at the following frequencies: 

a) electron cyclotron frequency fce, and its harmonics, n⋅fce, (n = 1, 2, …) 

b) electron plasma frequency fpe, 

c) upper-hybrid frequency  fuh, 

d) Qn resonances fQn (also known as Bernstein-mode resonances) 

e) Dn resonances fDn  

A number of relations exist between the plasma resonance frequencies [Stix, 1992]. 

The upper-hybrid frequency, fuh, for example, is given in terms of the plasma and gyro 

frequencies: 

2 2
uh pe cef f f= +  (2.1) 

The Qn resonances can be related to the plasma and gyro frequencies by an approximate 

expression [Warren and Hagg, 1968]: 

2

2 2

0.46 pe
Qn ce

ce

f
f f n

n f

 
≈ + 

  
, (2.2) 

which is a good approximation when fQn/fce is near an integer value.  Benson et al. [2001] 

provided curves for fQn/fce based on electrostatic dispersion equation solutions for zero-

group velocity plasma waves perpendicular to the Earth’s magnetic field. Finally, the 

sequence of Dn resonances is described by the following expressions [Osherovich and 

Benson, 1991]: 
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= −

 (2.3) 

Equations (2.1-2.3) can be used to build a composite model of the resonance 

signatures driven only by the electron gyrofrequency fce and the electron plasma 

frequency fpe. In addition to the known resonance frequencies, plasmagram scalers 

commonly utilize, for the resonance interpretation, the so-called X cutoff and Z cutoff 

frequencies, corresponding to the left cusp end points of the Trace 5 and 6 shown in 

Figure 2.4: 
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2.3. RPI Data Avalanche 

In addition to the remote active sensing mode discussed in Section 2.2, where RPI 

receives reflections of its transmitter signal from remote regular and irregular plasma 

structures, and stimulates and observes the local plasma resonances, RPI also monitors 

the natural electromagnetic noise environment and participates in the joint campaigns 

with other radio spectrum instruments in space and on the ground as both transmitter and 

receiver. Furthermore, even within the same observation mode, RPI cannot keep its 

measurement program parameters constant as it orbits the Earth. Because of the highly 

elliptical orbit of the IMAGE spacecraft, RPI observes a dramatic range of the plasma 

n = 1, 2, …  
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and magnetic field conditions and needs to accommodate this variability by appropriate 

selection of its plasmagram frequency and range intervals.  

Figure 2.4 illustrates the elaborate mission planning concept for RPI operations, 

originally described by Reinisch et al., [2000].  

 

Figure 2.4. RPI mission planning scenario: individual RPI programs (left 
bottom) are assembled into RPI Schedules (right bottom) to 
provide appropriate coverage of diverse science goals on orbit, 
depending on the spacecraft location and time (top) 

The spacecraft orbit is sectioned into six regions whose boundaries are calculated 

individually for each 14.5 hour orbit, depending on the location of the intersection points 
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of the orbit with the predicted location of the Earth’s plasmapaused. Within each orbit 

region a particular repetitive sequence of measurements is run, called a schedule. Figure 

2.4 includes the screen captures from the RPI mission planning tool, EdRPI. Individual 

RPI programs are designed with the Program Editor, which are then assembled into 

schedules using the Schedule Editor, and then finally assigned to the appropriate orbit 

regions using the Start Time Editor. 

As individual measurements may or may not contain useful information, the RPI data 

requires a substantial exploration and classification effort. Unfortunately, because of the 

irregular content and format of the RPI data stream, it is impossible to present its images 

in a constant frame so that many frames can be assembled in movies for a fast visual 

analysis. Data analysts have to browse through the RPI archive image by image to inspect 

plasmagrams for useful information. In July 2002, the measurement count reached 

1,000,000 records. With another three years of anticipated mission life, the total number 

of data records is expected to reach 3,000,000, with projected total of 2,000,000 

plasmagrams. With average 5 sec response time of the database to the retrieval request, it 

will take about 2,700 man-hours to simply glance at the data. This condition can be 

classified as the “data avalanche”. 

 

                                                   
d  Plasmapause is the outer boundary of the Earth’s plasmasphere. Plasmasphere comprises the higher 

density plasma controlled by the Earth’s magnetic field that co-rotates with the Earth.  
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CHAPTER 3. PREVIOUS WORK 

In this chapter we put the task of finding traces in the RPI plasmagrams in 

prospective of existing approaches to contour detection in images.  

3.1. Marr’s Paradigm of Vision 

We constrict this review to the contour extraction techniques that comply with Marr’s 

paradigm of computer vision [Marr, 1976], where the elements of increasing perceptual 

strength are built successively bottom-up using such operations as selecting and 

grouping. The Marr’s paradigm has been widely adopted for its ability to break the 

complex task of visual analysis into smaller, independent and manageable components 

(layers). There is ample evidence of modularity in the mammal vision system supporting 

this approach. On the other hand, independence of the layers in the Marr’s pyramid 

constitutes a fundamental flaw: lower stages of analysis are unaware of the model 

considerations on the higher levels, and errors flow irreversibly from lower stages of 

analysis upward to the next. Nonetheless, the Marr’s paradigm is commonly accepted as 

the founding principle of the pre-attentive vision, and its extensions are sought along 

various avenues.  

Figure 3.1 shows the Marr’s pyramid of perception that is used here to review 

existing work on contour extraction. The pyramid consists of the following layers: 
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Figure 3.1. Marr’s paradigm of visual perception: elements of 
increasing perceptual strength, built bottom up. 

Raw Image. Raw image is an (N x M) matrix of pixels, each pixel representing 

the image intensity. 

Edgels. Edgel is an “edge element”, a term introduced in visual scene analysis 

where objects are analyzed by first locating their boundaries (edges). The edgel 

corresponds to a sharp gradient in the image intensity typical of a boundary. Individual 

edgels form the contour.  

Oriented Edgels. Evaluation of local orientation of the contour at the edgel 

location adds an additional perceptual value to edgels. The edgel orientation is 

commonly obtained by seeking gradients of image intensity within a local context 

window around the edgel.  

Saliency map. Local context techniques do not yield reliable edgel orientations in 

various situations requiring a larger context area to correctly identify the trace. Long-

range, collective analysis of edgel data results in evaluation of perceptually stronger 

quantity, saliency. The saliency measure reflects how likely an edgel is part of a 
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contour. The saliency measure calculated for all edgels constitute the saliency map of 

the image. 

Contours. The saliency map is analyzed to find subsets of edgels belonging to the 

same contour. Found subsets may correspond to the contour segments that need to be 

completed into the full contours, but this operation is outside the scope of the pre-

attentive vision. 

A wide range of disciplines such as biology, physics, mathematics, computer science, 

and psychology have offered a great variety of concepts that contribute to the 

understanding how perception progresses from one level to the next in the Marr’s 

pyramid. The following section reviews the major results of these studies.  

3.2. Transition from Raw Image to Edgels 

In the seminal work on the edge detection, Marr and Hildreth [1980] laid the 

mathematical foundation that tied together several physiological mechanisms previously 

discovered in experiments with the retinal cells responding to a point light stimulus. It 

appears that the retina is not simply a photoreceptor matrix, but a rather complicated 

parallel bio-processor of the image. It partitions the image at multiple scales (channels) 

using cells of various receptive field sizes. Within each channel, a smoothing filter is 

applied, second derivative of the image intensity is taken, the short segments across 

which the second derivative changes its sign (zero crossings) are detected, and the 

magnitude of the change gradient is evaluated. Then the zero-crossing segments found in 

each scale channel are combined into a map describing all gradients of the image 
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intensity. The map is a symbolic early visual code presenting the original raw image to 

the higher levels of the perception. 

The merit of biophysical plausibility goes to the echo detection computational 

techniques that employ, similar to the retina,   

• a differentiation operator sensitive to the sharp gradients of the image 

intensity corresponding to an object boundary or a line, 

• a smoothing filter providing protection of the differentiation operator from the 

false positives due to noise, and 

• a multi-scale analysis ensuring that gradients of various scales are localized. 

A suite of differentiation operators and filters has been devised for detection of edges 

and ridges in images [Ziou and Tabbone, 1998]. The fundamental dilemma is to find the 

right balance between noise reduction and inevitable loss of information due to the 

damage that smoothing imposes on the fine structures in an image. This trade-off 

problem has motivated development of a class of detection algorithms that manipulate 

the analysis scale to better balance the tasks of noise protection and edge detailing. This 

class includes the classic Canny’s “feature synthesis” detector [Canny, 1986] that 

implements the fine-to-coarse scale combination strategy, “edge focusing” filter by 

Bergholm [1987] that applies the coarse-to-fine scale processing, and a later “local scale 

control” detector by Elder and Zucker [1996] that selects the most appropriate scale for 

each edgel.  
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Incomplete presentation of the raw image by the edge detector to higher stages of the 

processing is a serious source of recognition errors. Securing completeness of the 

representation code is a non-trivial task, considering the need to balance the completeness 

requirement with compactness, robustness and precision of the obtained code [Elder, 

1999]. Although many multi-scale representations can be made complete or near-

complete (e.g., the zero-crossing operator at multiple scales used by Marr and Hildreth is 

complete), they are definitely not compact. Wavelets-based codes [Mallat, 1989] secure 

mathematical completeness of the representation but infer little understanding of the 

explicit image structure and therefore offer just another way to compress the image. The 

variable scale method where each edgel is represented not by multiple scales, but rather 

by a uniquely selected scale [Elder and Zucker, 1996, Lindenberg, 1996] comes very 

close to fulfilling the list of requirements, but the completeness of the output code is 

achieved by loading the edgel with additional information (such as blur scale and 

asymptotic intensities) that are yet to be included in the models at the higher layers of the 

pre-attentive vision pyramid. These models commonly operate on the multiple scales 

independently and in order to select a feature across the scales implement a combination 

of “winner take all” (WTA) and “inhibition of return” strategies [Koch and Ullman, 

1985], discussed in greater detail in Section 3.3.2.5 below. 

3.3. Transition from Edgels to Contours 

After the edgels are detected, a solution to the task of combining them into contours 

can be sought immediately, without going through the intermediate layers of the Marr’s 
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pyramid shown in Figure 3.1. Figure 3.2 presents a realistic example illustrating several 

facets of the task.  

  
(a) (b) 

 Figure 3.2. Example of direct grouping of edgels into contours. (a) 
edgels produced by detection, (b) edgel subsets forming 
contours.  

The edgels rarely line up in distinct, continuous sequences. In most real-world 

applications, the set of detected edgels is prone to various degrees of false positive edgels 

(noise), false negative edgels (gaps), and localization errors (jitter). However, a simple 

concept of seeking neighbors in vicinity of each edgel can readily make a working 

algorithm for edgel grouping. Early edgel grouping algorithms worked quite efficiently in 

a number of applications where problems of noise, gaps and jitter were not severe.  

3.3.1. Local grouping techniques 

Early edgel grouping methods worked in two steps, seeding and tracing. The seeding 

algorithm sought an edgel or a group of edgels that could be used as the start of a 

contour, and the tracing attempted to find the rest of the edgels constituting the contour 

by testing edgels in the vicinity. Grouping algorithms based on this simple principle are 
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found in the literature as far back as the early 1960s (e.g., [Galkin, 1962]). These 

algorithms employed a rudimentary logic that allowed them to bridge narrow gaps in the 

contour and avoid false edgels that did not lie along the contour line. 

Rosenfeld et al., [1976] pioneered an approach that not only made the early methods 

more robust against noise and gaps, but in fact established a new field of the research in 

perceptual grouping. It started with the idea to analyze the close vicinity of edgels before 

linking them, trying to identify and reverse false positive and false negative decisions 

(i.e., noise and gaps). Because the authors used the term “labeling” for the operation of 

edge detection, the revising procedure was named “relabeling”. False negative pixels 

were considered for relabeling via a “relaxation” procedure that simply weakened the 

labeling criterion if the trial pixel fitted well with the neighboring edgels (for more 

details, refer to Hancock and Kittler [1990]). Similarly, the false positive edgels were 

removed if they were not supported by either strong or weak edgels. Finally, an important 

decision was made to make the relaxation procedure iterative and run it until no further 

relabeling changes were observed. The iterative nature of the relaxation algorithm had an 

intriguing impact on its further development. As one individual application of the 

algorithm affects only a few immediate neighboring context windows, the relaxation 

labeling can be performed in the parallel fashion and can be therefore thought as 

dynamic, parallel evolving of a network of locally interacting operators. This observation 

linked the simple heuristic edgel relaxation concept to mechanisms of the pre-attentive  

vision and resulted in an intensive study of statistical and neural aspects of the relaxation 

labeling networks [Kittler and Illingworth, 1985; Pelillo and Faneli, 1997]. Eventually the 
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relaxation labeling network concept was recasted into the framework of evolutionary 

autonomic agents [Liu et al., 1997] and took its place among other combinatorial 

optimization methods discussed later in Section 3.3.2. 

The iterative relaxation procedure analyzes the context window around the trial pixel 

many times. We call a local grouping technique microscopic if its context window is 

small and the relabeling outcome or edgel linking decisions are pre-computed following 

certain design rules (cellular automata) and are often stored in a lookup table for better 

speed. A popular example of such microscopic technique is so-called extended border 

tracing by Liow [1991] where all configurations of the labeled pixels in 3x3 context 

window were reduced to the set of 12 situations, each determining the next step of the 

tracer (see Figure 3.3).  

 

Figure 3.3. An example of the “microscopic” grouping technique 
considering all possible line tracing decisions in 3x3 context 
window. From [Liow, 1991].  
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The fundamental problem with the microscopic local grouping techniques is insufficient 

protection against noise, gaps and jitter due to inherent “locality” problem (see, for 

example, analysis by Nelson, [1994]) that is directly related to their inability to abstract 

from precise edgel locations within the small context window. The locality problem 

manifests itself as failure of the algorithm to universally link together longer line 

segments and at the same time be robust against the noise and edgel jitter. The process of 

enlarging the scale of collective analysis of edgels constituting the lines leads to 

development of local, macroscopic grouping techniques. 

Simple enlargement of the context window so that wider gaps can be bridged by the 

grouping algorithm causes aggravation of the locality problem. A popular class of 

techniques strengthens the line smoothness requirement by constraining the search of 

edgels through the gaps to the sectors whose location is predicted by extrapolation of an 

already found line segment. The predicting filter can be thought of as a variant of the 

well-known Kalman filter used to predict the next state of systems in time. To use the 

predicting filter for edgel grouping, a line segment needs to be found first to setup the 

filter (equivalent to the system history in Kalman filtering). To find the seeding segment 

in the edgel data, certain assumptions have to be used on its quality in terms of noise, 

gaps, and jitter, which is a drawback of the algorithm.    

Numerous implementations of the predicting filter grouping technique can be found 

in the literature since 1960s (for a review of the early work on line tracing in high energy 

physics refer to [Strand, 1972], a good example of a predicting filter for ionogram 

autoscaling is given by Fox and Blundel [1989]). With time, these techniques were 
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improved for better noise robustness during both seeding and tracing phases (e.g., an 

optimizing technique by Nelson [1994]). However, the predicting filter remains prone to 

locality problems because each grouping decision involves only a single edgel. 

Techniques that manipulate with longer line primitives instead of individual edgels or 

small context windows may have better robustness to noise and jitter. In one approach by 

the author [Galkin, 1992], a set of predetermined linear templates is applied to each edgel 

to test if there are neighboring edgels that fit together within one template. Because two 

or more templates can claim the same edgel, a recursive conflict resolution algorithm is 

run to determine one-to-one assignment of edgels to lines (Figure 3.4).  

 

Figure 3.4. Fitting templates to edgels and resolving conflicts.  

Although fairly successful in the case of smooth traces, the algorithm still appeared to be 

sensitive to the jitter observed during disturbed plasma conditions, and its gap bridging 
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characteristics were rather modest. Although widening of the template could improve 

robustness to the jitter, it also creates excessive conflict rate and deteriorates protection 

against noise.  

A generic bottom-up clusterization with a distance metric for the agglomeration 

criterion will not produce elongated clusters for it is supporting the proximity principle 

instead of the continuity (see Figure 3.1). Murtagh and Raftery [1984] were able to 

generalize the distance metric to include a constraining parameter that scaled down the 

criterion across the short dimension of the clusters. The constrained clusterization is able 

to group edgels in long and smooth lines, but use of the distance metric makes it overly 

sensitive to noise and jitter. 

To extend the context area of grouping analysis, it became necessary to analyze all 

edgels in the context neighborhood collectively. Collective analysis naturally led to a 

suite of algorithms featuring synaptic interactions that weigh contributions from 

individual edgels. The weights were determined based on mutual placement of edgels and 

other characteristics. The key principle of the weighted interaction is to facilitate 

contributions from the edgels belonging to the same contour and to suppress all others. 

3.3.2. Global grouping techniques 

We use the term ”global” to describe the next class of edgel grouping techniques to 

highlight the difference to the local techniques that manipulate with individual edgels 

separately. In contrast, the global grouping method involves collective analysis of many 

edgels to make grouping decisions. Global methods employ a model, though simple at 
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times, that describes the class of lines to look for and then extracts the lines by bringing 

the model into optimal agreement with the curvilinear features in the image.  

The Hough transform [Hough, 1962], together with its many derivatives and 

generalizations, has been known in the literature as the rigid contour approach because it 

makes direct assumptions on the geometric shape of the sought contours and exhaustively 

fits the contour model to the image, looking for the best fit(s). Although it is very rare 

that contours have perfect geometric shape, the rigid processing is still commonly used to 

find segments for further grouping. 

3.3.2.1. Rigid Contours 

The Hough transform is a classic example of the global model fitting technique for 

searching rigid contours in edgel patterns. In its classic form, the Hough transform 

attempts to fit a rigid model to all possible subsets of given points, thus building a 

histogram of estimated model parameters. Figure 3.5 illustrates this idea with an example 

of the linear Hough transform applied to a point pattern containing four signal points and 

one noise point. The four signal points on Figure 3.5 are consistent with the linear model 

and therefore all parameters estimated from the six signal pairs contribute to the same bin 

of the histogram. The pairs with the noise point produce four different parameter sets. 

After the exhaustive fitting is done, the histogram can be searched for the local maxima, 

corresponding to the fitting solutions. The solutions are optimal in terms of detection 

error. 



29 

 

 

Figure 3.5. Linear Hough transform fitting straight lines to a pattern 
containing four signal edgels (green) and one noise edgel 
(red)  

The advantages of Hough transform include robustness of the fitting against noise 

and gaps without any assumptions on the number or location of the curves in the image. 

The classic Hough transform (CHT) is not particularly “intelligent”. Drawing analogy 

with the chess game strategies, it corresponds to the algorithm that takes the time to 

generate all possible moves on the board.  For this simple reason, the CHT becomes 

computationally inefficient when the number of model parameters is greater than 2. 

Because of that restriction, the models that work well with CHT are very simple, and 

corresponding solutions lack locality. The lines restored from the found solutions span 

the whole image, and another step is required to locate the actual edgels in the image that 

belong to the solution and thus identify the start and end points of the line. For this 

reason, the HT fails to process busy images with short segments. 
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A number of ideas were suggested to improve CHT computation time. One popular 

class of enhanced HT is called Probabilistic Hough Transform (PHT) (a good review of 

PHT can be found in [Kalviainen et al., 1995]), where instead of the exhaustive test of all 

edgel combinations, a repetitive, random sampling of the distribution is organized, and 

when a distinct maximum in the histogram appears, the corresponding line segment is 

immediately identified and the edgels constituting the segment are removed from the 

edgel pattern, thus conforming to another principle of human vision, inhibition of return 

[Posner and Cohen, 1984; Itti et al., 1999]. The Random Hough Transform (RHT) [Xu at 

al., 1990] is a version of PHT that samples the edgel distribution itself. A notable version 

of HT, called the Importance Sampling Hough transform, ISHT, was suggested by Walsh 

and Raftery [2001], where the model parameter space is repetitively sampled to verify for 

a randomly selected subset of model lines the corresponding quality-of-fit (called 

“importance” by the authors). The histogram of importances is thus obtained and 

searched for the peak corresponding to the best solution. As in all PHTs, the solution is 

then identified in the edgel pattern and the corresponding edgels are deleted from the 

image. The importance sampling operation is repeated in a loop until a stop condition is 

met. The ISHT is reported to produce smaller errors in the resulting model fit comparing 

to other PHTs, because it samples the parameter distribution instead of the edgel 

distribution and therefore is not susceptible to the errors in the edgel localization.  

The key problem of Hough Transform method remains unchanged in its improved 

versions: it does not have a means of adjusting itself to deviations from the rigid model 



31 

 

that it was based on. Another class of techniques exists that employs deformable models 

that conform themselves to the image linear features with greater flexibility.  

3.3.2.2. Deformable Contours 

In contrast to the rigid approach, interaction of the edgels in deformable models is 

governed not by a particular contour model, but rather by a set of generic perceptual 

restrictions. These restrictions are known in the literature since the 1930s as the Gestalt 

principles of perception [Rock and Palmer, 1990, and the references therein]. Continuity 

and proximity are two principles frequently mentioned in the literature; Figure 3.6, 

adopted from [Wersing et al., 2001], is a good illustration of two typical grouping tasks 

performed under the guidance of proximity and continuity constraints.  

 

Figure 3.6. Use of Gestalt principles of perception for grouping 
(adapted from [Wersing et al., 2001]).   
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The Gestalt continuity interaction in the lower panel of Figure 3.6 uses an additional 

characteristic of the edgel, its orientation. We shall briefly discuss the process of inferring 

edgel orientation for the purpose of the continuity interaction. 

3.3.2.3. Transition from Edgels to Oriented Edgels 

Orientation of the contour at the edgel location is relatively easy to determine with a 

local context filter. Remarkably, such filter exists in the mammal visual system beyond 

the retina, in a receptive field of cells in the brain called “primary visual cortex”, or striate 

cortex, in agreement with Marr’s concept of separating the perception process in the 

pyramid layers. Individual cells of the striate cortex are sensitive to segments of 

particular orientation and therefore can be thought of as “bar detectors”. Among models 

of the cortical cells, the Gabor function is considered the closest equivalent [MacLennan, 

1991]. Local estimates of the edgel orientation can also be obtained by other, 

computationally lighter filters such as Sobel x and y operators [Gonzalez and Wintz, 

1987].  

3.3.2.4. Transition from Oriented Edgels to Saliency maps 

 First introduced by Sha’ashua and Ullman [1988], the concepts of saliency measure, 

saliency map, and saliency network attracted considerable attention in the field. The 

saliency measure is a score calculated for any contour in the given image using principles 

based on the Gestalt laws of perception:  

Continuity:  

• the score is higher for longer curves,  

• the score is penalized for gaps 
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Constancy of curvature (Prägnanz):  

• the score is penalized for changes of curvature 

Proximity: 

• individual scores from pixels along the curve are added, so that contributions 

from distant pixels decay with accumulating gaps and curvature changes 

along the curve. 

Effectively, the saliency measure gives a higher score to the long, continuous and 

smooth lines over the short, discontinuous and wiggly lines. It is a stronger perceptual 

entity inferred from previously used local measures of the edgel perceptual strength, such 

as position, gradient orientation, etc. Using the saliency measure, Sha’ashua and Ullman 

defined a saliency map of an image as another image where each pixel’s intensity is 

proportional to the most salient curve emanating from that pixel. Once the saliency map 

is available, it is possible to find, for example, the most salient curve in the image that 

corresponds to the element of the map with the highest saliency value. The most 

intelligent part of the proposed approach is the saliency network, a tool to efficiently 

calculate saliency maps for images. The saliency network is a dynamic system consisting 

of locally interacting elements (edgels). Similar to the local relaxation labeling process 

described previously in this chapter, the saliency network optimizes its state iteratively by 

a relaxation procedure that is capable of gradually building the contours that conform to a 

family of “extensible” shapes (such as the circle). The concept of iterative optimization is 

very important for our approach described in Chapter 4. 
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Guy and Medioni [1996] reviewed a number of saliency measures, algorithms for 

their evaluation, and saliency map analysis techniques that were developed since the 

pioneer work by Sha’ashua and Ullman in 1988. They also introduced their own, 

iteration-less approach to calculation of the saliency maps, where the saliency score is 

calculated once as a weighted sum of all contributions from the neighboring edgels.  

Major contribution to the perceptual saliency approach came from the psychophysical 

research of pre-attentive vision. Yen and Finkel [1998] built a model of the striate cortex 

that encompassed many of the findings in this research. Their model is based on 

interaction between oriented edgels represented by the cortical cells. Discovery and 

analysis of such interactions presents another strong argument in favor of modularity of 

the vision captured by the Marr’s paradigm. According to the model of Yen and Finkel, 

each cortical cell receives a collective facilitation from a network of other cells in its 

vicinity. The degree of facilitation is determined individually for each pair of interacting 

cells using the argument of Gestalt continuity. Figure 3.7 shows the typical interaction 

pattern for the post-synaptic cell (in the center of the pattern) receiving inputs from the 

pre-synaptic cells in the shaded areas.  

The co-axial areas of the patterns implement the co-circularity constraint that 

frequently appears in other models for perceptual grouping [Parent and Zucker, 1989, 

Guy and Medoni, 1996, Galkin et al., 1996]. The co-circularity constraint is in agreement 

with the Prägnanz Gestalt principle of curvature constancy. Biophysical studies show that 

co-circularity is enforced only in the long-range co-axial pattern, whereas the trans-axial 

pattern features simpler requirement of parallelism.  
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Figure 3.7. The interaction pattern of the oriented cortex cells [Yen and 
Finkel, 1998] in the model of pre-attentive human vision. 
The post-synaptic cell in the center of the pattern receives 
facilitating inputs from the pre-synaptic cells in the shaded 
areas. Degree of facilitation depends on the distance 
between cells and their mutual orientation.   

The saliency measure is typically based on the local perceptual strengths of the edgels 

such as their orientation evaluated with the help of a local-context steerable filter. Alter 

and Basri [1998] demonstrated high sensitivity of the saliency evaluation to discretization 

effects, which makes this approach highly susceptible to the edgel jitter that causes 

incorrect estimates of the local orientation. Indeed, errors in evaluation of the post-

synaptic edgel orientation (Figure 3.8) cause misalignment of the whole long-range 

interaction pattern. These considerations warrant attention to those techniques in which 

the edgel orientation is an integral part of the global combinatorial optimization scheme, 

so that a greater robustness to the discretization problems can be achieved. The task of 
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perceptual grouping was approached in terms of an evolving dynamic system, where 

constituting parts interact under certain restrictions, an artificial neural network (ANN). 

Dynamic interaction of the neurons in the neural network is similar to the iterative 

relaxation optimization in the saliency networks. However, the ANN models are better 

studied and have a good biological counterpart, the brain. Each neuron in the network has 

connections to many others contributing their outputs for the neuron’s analysis (Figure 

3.8).  

 

Figure 3.8. Hopfield model of artificial neuron,   

The artificial neuron is a simple element that constantly evaluates the weighted sum 

of inputs I j from other neurons to decide what output it shall assume [Hopfield, 1982]: 

j
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,  (3.6) 

where Wj are the synaptic weights that scale inputs I j from other neurons to produce the 

summary output x. This feature of the ANN is in a very good agreement with the concept 
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of establishing a cumulative context in support of the grouping decisions. The synaptic 

weights capture the restrictions under which the edgels interact (in our case, the Gestalt 

principles). The system of neurons starts interacting until they reach a stable state. A 

major contribution to understanding of the dynamic processes in ANNs is due to 

Hopfield who described the evolving process in terms of an energy function that always 

decreases. The network design process can be then thought of as “energy engineering”, 

where the energy function is written down so that it becomes minimal for the desired 

outcome of the optimization. The energy function is then used to derive the rules 

governing the evolving of the neural network. 

The ANN model shown in Figure 3.8 employs an additional mechanism in the 

evolving rules for the neurons that allows the network to avoid local minima of the 

energy function on its way to the global minimum. Using a statistical treatment of neuron 

states known as the “mean field theory”, or MFT [Peterson and Anderson, 1987], it 

became possible to induce regulated amounts of thermal noise into the evolving rule so 

that it escapes the local minima. In the Hopfield network the neuron output, O, is 

obtained by processing the weighted sum of inputs, x, with a sigmoid function: 

 






=
T

x
O tanh ,  (3.7) 

where T is the noise temperature. Larger temperatures correspond to larger amount of 

noise, and the evolving procedures benefit from various rules of the simulated annealing, 

where the temperature decreases as the network approaches its global minimum of the 

energy function.   
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One of the first energy-minimization techniques to be applied to the contour 

extraction problems was the segment model introduced independently by Peterson [1989] 

and Denby [1988]. The segment model is based on a “spin” network where neurons 

accept only a discrete set of states. In this segment model, the spin variable sij denotes 

whether two edgels i and j are connected by a contour segment of length r ij. The energy 

function describing this simple idea is (see Figure 3.9):  
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Figure 3.9. Segment model for contour extraction by [Peterson, 1989] 
and [Derby, 1988]. 

The first term of the energy function imposes continuity and smoothness constraints on 

the way connected segments are combined into lines. It favors adjacent segments sij and 

sjl that are short (small rij and r jl) and aligned (small angle θijl  between rij and rjl). The 

second term punishes bifurcated lines. Figure 3.10 shows the results of stringing by 

Peterson’s segment model for a family of circular traces with no noise, where Nsweep 

denotes the number of neural network iterations.  
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Figure 3.10. Edgel grouping with Denby-Peterson segment model, an 
example from [Peterson, 1989] 

This segment model could not produce a reliably converging network configuration 

because of the cumbersome formulation of its energy. Another approach was suggested 

by Peterson [1990], where a “rotor model” was introduced as shown in Figure 3.11. In 

this approach, the network has control over the length and orientation of rotors placed on 

top of each edgel. The energy function of Petersons’ rotor model is minimal when rotors 

are aligned with a trace line (see Figure 3.12): 
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Figure 3.11. Rotor model network evolves, aligning rotors along the 
contour. 

where ijρ is distance between points i and j, α is angle between rotors Vi and Vj , β is 

angle between rotor Vi and the line connecting two points, and m, k are algorithm 

constants.  

 

Figure 3.12. Linear trace model for rotor NN [Peterson, 1990]  

The first term of the equation 3.9 forces the rotors to turn parallel to each other and the 

second term aligns them along the trace segment. The energy function favors the rotors 

pointing in the same direction as the straight line between them, and therefore has a 

tendency to favor straight lines. Its efficiency degrades when traces have significant 
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curvature. Peterson’s model was successfully generalized to circular traces by Baginyan 

et al., [1994] (Figure 3.13 and Eq. (3.10)): 

  

Figure 3.13. Circular model for rotor network by Baginyan et al., 
[1994]  
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Here αij is angle between rotors Vi and Vj
', where Vj

' is obtained by flipping Vj around 

the chord Cij. The circular model of rotor interaction turns rotors tangential to the trace 

curve. 

The concept of energy minimization provides a better foundation to the deformable 

contour approach. The deformable contour can now be thought of as a dynamic system 

described by its energy function with three terms: 

extimg EEEE ++= int  (3.11) 

where internal energy Eint imposes smoothness and continuity constraints on the contour, 

image energy Eimg attracts the contour to the edgels, and external energy Eext moves and 
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stretches/shrinks the contour. This dynamic system seeks optimal balance between the 

three terms.  

A great variety of energy functions have been engineered for the purpose of contour 

extraction, appearing in the literature under such names as “snake”, “elastic arm”, and 

“active contour”. These algorithms can be though of as dynamic optimization systems 

seeking a balance between fit of the contours to the image features while preserving their 

smoothness and continuity. In the absence of external force, the contour balances the 

force that pulls it to the edgels and the elastic force that enforces local smoothness of the 

contour and global conformation to the contour model, if it is available. The balance can 

be biased to either side by using regularization coefficients 0 < λi < 1 (Lai, [1994]):  
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Here the contour is a set of edgels {vi}, i = 1..n. Figure 3.14 illustrates how choice of λ 

changes the shape of the contour, where higher values of λ results in a smooth line that 

cannot capture sharp corners, and lower λ make the line follow the sharp turns but is too 

sensitive to noise. 

The contour without external force that can change its location, orientation or length 

needs to start with a good initial configuration to optimize it in accordance to the energy 

formulation. The initial configuration can be obtained by some other technique, including 

manual specification of the seed edgels. The common automated solution to the task of 

finding the number of lines in the image and initialize the “snakes” is to use rigid 
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contours extracted via the Hough transform and then evolve the deformable contour 

around each of them.  

 

Figure 3.14. Effects of λ parameter in the contour energy: (a) smooth 
line that does not capture corners, (b) good capture of 
corners but high sensitivity to noise, (c) compromise. 
From [Lai, 1994]. 

A deformable contour that does not contain the internal energy term but allows more 

freedom in terms of the number of lines and their expected shape was suggested by 

Ohlsson [1993] to solve the task of grouping N edgels in M lines: 
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Here the Sia is the binary decision term which is 1 if edgel i is assigned to line a, and 0 

otherwise. The first term of energy E in equation 3.13 specifies the image force acting on 

the contour by calculating the cumulative deviation of edgels from the line (Mia is the 

squared Euclidean distance between point i and trace a). The second term is external 

force imposing a penalty for edgels not included in any line (i.e., the edgels with 
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a
isS ). The deformable contour described by Eq. (3.5) was found to have difficulty 

reliably evolving into the global minimum of energy in presence of noise and gaps. 

Muresan et al., [1997] improved the convergence by setting the contours’ initial 

configurations to the rigid contours obtained by the Hough transform.  

3.3.2.5. From saliency map to contours 

In the absence of a top-down supervision, analysis of the saliency map is driven by 

the map features called “activation spots” that stand out against the background. A model 

architecture for this process was proposed by Koch and Ullman [1985] based on a study 

of human visual psychophysics by Posner and Cohen [1984]. To extract more than one 

activation spot that may be present in the saliency map, an iterative procedure attends the 

spots sequentially and then blocks them from further search. Itti et al. [1999] built a 

visual attention system that implements this concept using the “winner take all” (WTA) 

neural network for selection of most salient features in the saliency map. The WTA 

neuron is a dynamic “integrate-and-fire” unit that constantly sums its synaptic input and 

compares to a threshold value. The WTA network is placed on top of the saliency map 

and starts the integration process; the neuron at the map location of the highest saliency 

fires first, while all others remain suppressed. This event triggers a switch of the focus of 

attention (FOA) to the winning location and activation of the “inhibition of return” 

mechanism demonstrated in human visual psychodynamics [Posner and Cohen, 1984] 

that resets WTA network and suppresses the saliency map at the winning location from 

subsequent analysis. 
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3.4. Outlook 

A range of early vision techniques exists with good potential for inferring traces from 

the RPI plasmagrams. In reviewing them, a greater attention was paid to approaches of 

biological plausibility, primarily because of the fact that human vision solves the task. 

There is a class of models that comply with Marr’s paradigm, a bottom-up archetype that 

builds the visual target out of simpler elements of increasing perceptual strength. There is 

an abundance of evidence that mammal pre-attentive vision conforms to the Marr’s 

paradigm. In the next chapter we will analyze how the task of plasmagram trace 

recognition fits into the frame of pre-attentive vision models and discuss the measures 

taken to improve the robustness of the processing. 
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CHAPTER 4. TRACE RECOGNITION 

An increasing number of the real-world applications can be delegated to an artificial 

vision system. Searching for the traces in the RPI plasmagrams is one such application 

presenting particular importance to the RPI mission team and space research community 

at large. This chapter discusses the unique features of the plasmagram images and 

describes the pre-attentive vision model for their processing. 

4.1. Uniqueness of Plasmagram Signatures 

The task of plasmagram trace recognition presents a unique challenge to existing 

methods because of a combination of factors. Fundamentally, there is little a priori 

information available on the possible occurrence and number of the traces, and there is no 

simple function that models their shape. Thus, even though more knowledge is collected 

about plasmagram traces, the trace extraction algorithm is still unable to use top-down 

considerations at this time. In the bottom-up, pre-attentive approach to the recognition 

task, the vision model regards the plasmagrams as non-specific images with lines. 

Furthermore, the plasmagrams are collected in an unknown, tremendously variable 

environment using a low-power probing signal that often arrives near or below the 

background noise level associated with natural radio emissions. The need for a trace 

extraction algorithm to be adaptive to a range of signal-to-noise ratios (SNR) makes the 

recognition task unique and difficult.  
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4.1.1. Variable Signal-to-Noise Ratios 

The echo trace if often weak, as in Figure 4.1 showing an example plasmagram taken 

on June 29, 2001 03:13 UT where a faint trace can barely be seen spanning frequencies 

from 65 to 120 kHz. Besides the trace being globally weak, it can display various levels 

of SNR within a single plasmagram due to differences between noise characteristics on 

different frequencies and changing conditions for the signal propagation depending on 

orientation of the RPI antenna system that slowly rotates in space.  

 

Figure 4.1. Plasmagram taken on Jun 29, 2001 03:13 UT containing 
two traces with a low signal-to-noise ratio. 

Figure 4.2 shows a plasmagram taken on June 29, 2001 03:00 UT, where some parts 

of the trace are missing whereas others are well-defined.  
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Figure 4.2. Plasmagram taken on Jun 29, 2001 03:00 UT showing a 
trace of variable signal-to-noise ratio across the 
frequencies. 

Noise characteristics vary substantially not only from frequency to frequency, but 

also with spacecraft location and time. Global events in the solar-terrestrial system cause 

frequent increases in the natural radio emissions in space (e.g., auroral kilometric 

radiation, solar radio bursts). These emissions often have highly irregular structure 

causing numerous false positives of the differentiation operator in the edge detector. 

Figure 4.3 presents a plasmagram taken during one of such event on Jul 9, 2003 18:24 

UT with an increased level of noise in the frequency band between 210 and 260 kHz. 

Each frequency within the band contains multiple pseudo-echo signatures resulting from 
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the highly variable structure of the noise as shown in the Panel 4.3(a) in detail; the echo 

detector produces a large number of false positives for this case (b). 

 

 
 (a)  (b) 

Figure 4.3. Plasmagram taken on Jul 9, 2003 18:24 UT during high 
radio emission activity in the frequency band between 
210 and 260 kHz (shown in detail in panel (a)). The 
emissions cause multiple false positives of the echo 
detector (b). 

Low SNR results in false positive and negative rates of the edge detector. The 

problem of trace gaps is at times severe, and faint traces can mix with stronger traces in 

the same plasmagram because certain propagation modes experience signal attenuation 

because of increased absorption in plasma or unfavorable orientation of antenna.  

Inconsistent trace quality makes local grouping techniques inapplicable because of the 

need to process edgels over a large context scale for proper identification.  



50 

 

4.1.2. Range Jitter 

In contrast to the airport radar whose echoes are coming from well-defined targets, 

the RPI echo is a result of reflection from a relatively large area of a complex structure 

exhibiting dynamic movements and irregularity of various scales. A single echo detected 

by RPI may be a combination of multiple echoes arriving with similar propagation times, 

where the overlapping causes distortions of the echo envelope. In this case it is difficult 

to determine its leading edge precisely, and it is not unusual for the resulting trace line to 

display a substantial range jitter (deviation up or down from the trace line).  

This range jitter causes errors in the rigid contour approaches and grouping 

techniques that employ the Gestalt principle of smoothness. Figure 4.4 illustrates 

performance of the linear Hough transform applied to an edgel pattern consisting of four 

echoes comprising the straight line and one noise spike (left panel) and to the same 

pattern affected by a range jitter (right panel). Because edgel positions are used for fitting 

directly, the corresponding histogram peaks are washed out.  

  

Figure 4.4. Hough transform applied to low (left) and high (right) 
range jitter patterns  
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Muresan et al. [1997] studied the washout problem to conclude that if edgels deviate 

from the trace line, the HT is applicable only as a pre-processing algorithm that derives 

an approximate number of trace segments and a rough evaluation of their position.  

Range jitter causes errors in evaluation of the local contour orientation for the edgels, 

subsequently resulting in misalignment of the long-range interaction pattern.  Figure 4.5 

shows a simulated edgel pattern illustrating this effect. 

 

Figure 4.5. Simulation of range jitter causing misalignment of the 
edgel interaction pattern and low salience  

In this example, two edgels in the middle of the pattern are slightly misplaced from 

the trace line and data gaps are inserted on both sides. Local context algorithm produces 

wrong orientation of contour at both edgel locations. The saliency measure is then made 

very low for both edgels, a direct consequence of the range jitter and data gaps. 
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4.1.3. Closely Spaced Traces 

Another problem for conventional saliency measure approaches is the need to resolve 

plasmagram traces that lie close to each other. If one of the traces is short, its saliency 

measure will not be comparable to its longer neighbor’s, resulting in the complete loss of 

this shorter trace in the map as the point of attention attends the strongest saliencies in the 

image. In plasmagrams, such a shorter trace typically corresponds to the O-polarization 

waves that accompany the stronger X-polarization trace.  

4.1.4. Range and Frequency Resolution Artifacts 

Most of the time, the frequency and range resolution of plasmagram images are 

insufficient to capture traces adequately. The RPI operates at very low pulse repetition 

rate because of the need to record echoes arriving at great distances. Thus there is an 

upper limit on the number of probed frequencies to keep total plasmagram measurement 

time reasonable to satisfy a requirement of high cadence of measurements as the 

spacecraft orbits the Earth. With the number of frequencies kept under control, the need 

for the RPI to accommodate a broad range of possible scenarios in the environment 

means that wider frequency coverage is always chosen over better frequency resolution. 

Another important requirement limits the telemetry data volume, which decreases the 

number of range bins and makes the range resolution coarser. Thus the traces are 

commonly thin and often are just one pixel wide. Conventional smoothing filters that 

protect the edge detector from noise can damage thin trace signatures.  
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4.2. Approach 

Range jitter, data gaps, false echoes, and nearby traces are the reasons for frequent 

problems with calculation of local edgel orientations and subsequent saliency analysis 

techniques that are based on the static oriented patterns of edgel interaction [Guy and 

Medioni, 1996, Yen and Finkel, 1998]. The saliency evaluation has to allow edgel 

orientations to be modified by the global scale process, because the problems with local 

estimates can only be identified on the global scale. The saliency calculation then 

becomes an optimization process that refines the local orientations. An additional layer is 

therefore introduced in the Marr’s pyramid for the oriented edgels that can change their 

orientation, rotors (as in Peterson’s rotor model [1989]). In contrast to the oriented 

edgels, the rotors have freedom to rotate depending on facilitation from other rotors in the 

vicinity. As every change of a rotor modifies the degree of facilitation, the whole 

optimization process is made iterative and thus is best described in terms of the energy 

minimization (as discussed in the Chapter 3). The interactions between the rotors are not 

forced to comply with any specific trace model, but rather are governed by the general 

Gestalt laws of perception, plus some other considerations as discussed later in the 

chapter.  

Optimizing the rotor pattern can be computationally demanding, considering that 

number of single rotor interactions to evaluate in a fully connected network grows with 

the number of rotors as O(N2).  This is the reason why Gestalt-based saliency calculations 

based on the fully connected iterative neural networks are rather exceptional. A number 

of measures were devised to decrease the computational difficulty. In particular, we use 
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the fact that RPI echoes are recognized only if they are above the noise level, and so we 

apply echo detection techniques to suppress irrelevant information from entering the 

saliency calculations. These questions are further discussed in the Section 4.3. 

Figure 4.6 shows extended version of the Marr’s pyramid for trace extraction in the 

plasmagrams. Below we describe the perceptual elements on all levels of the pyramid in 

relation to RPI plasmagrams. 

 

Figure 4.6. Extended Marr’s pyramid of perception for plasmagram 
processing.  

Raw Image. Raw image is an (N x M) matrix of pixels, each pixel representing the 

RPI antenna voltage.  

Echoes. The first stage of processing labels the pixels of the plasmagram image that 

potentially belong to the RPI signal. The labeling is accomplished using an adaptive 

thresholding algorithm, a frequency-scanning radar echo detection technique that 
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evaluates the threshold level for each frequency individually using an estimate of 

background noise and then labels those pixels that exceed the threshold levels as echoes. 

Edgels. The range interval taken by an echo is reduced to a single point 

corresponding to its time of arrival (TOA). This operation is very similar to selection of 

the edgels, but using only the leading edges of the echoes. Later in the text the TOA 

points are referred to as edgels (edge elements) to indicate that they constitute the leading 

edge of a trace. 

Rotors. Classic early vision model for contour extraction suggests oriented edgels as 

the next degree of perceptual strength in the pyramid (see Section 3.1) The edgel 

orientation is commonly obtained by seeking gradients of image intensity within a local 

context window around the edgel. Local context techniques, however, do not yield 

reliable edgel orientations in various situations requiring a larger context area to correctly 

identify the trace. Orientation of edgels is modified by a global-scale optimization 

process. Rotors are oriented edgels that can rotate under facilitation from neighboring 

rotors. 

Saliency map. Long-range, collective analysis of rotor data results in evaluation of 

perceptually stronger quantity, saliency. The saliency measure reflects how likely an 

edgel is part of a trace. Saliency measures calculated for all edgels constitute the saliency 

map of the image. 

Segments. The saliency map is analyzed to find subsets of edgels belonging to the 

same trace. This is a bottom-up procedure typical of the pre-attentive vision, and the 
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found subsets may correspond to the segments of traces to be further grouped into 

complete traces. 

Traces. Perceptual grouping of segments into traces corresponds to the attention-

driven recognition, where certain assumptions are made about the model of the trace 

shape. The grouping algorithm switches attention between found pre-attentive vision cues 

to evaluate their support of the model. 

The next section discusses the questions of reducing the number of edgels before the 

optimization of the rotor alignment starts. 

4.3. Transition from Raw Image to Edgels 

Direct application of the conventional leading edge detectors to the plasmagrams 

would cause a severe false positive rate because of their sensitivity to every gradient of 

intensity in the image. Robust edgel detectors explore various possibilities to distinguish 

signal from noise. Common approaches to the problem (e.g., [Ziou and Tabbone, 1998]) 

involve smoothing to remove the noise variability, thresholding to suppress weaker noise, 

and local tests of the signal integrity across adjacent pixels. Most of these commonly 

used measures are damaging, to varying degree, on the signal in plasmagrams. In contrast 

to the typical scenarios of object identification in visual scenes, the plasmagram traces are 

thin and faint signatures in the noise background of irregular and varying nature.  

Figure 4.7 presents an example of the leading edge detection in the plasmagram taken 

on March 2, 2002, 04:46 UT.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 4.7. Edgel labeling for an example plasmagram (a) taken on March 2, 2002, 04:46 
UT. Direct edgel detection (b) produces a large number of false edgels even 
with the thresholding of the amplitude gradient. (c) Application of the 
smoothing 3x3 median filter prior to edgel detection reduces the noise edgels 
but damages thin traces (d). The chosen approach (e) uses the adaptive local 
thresholding to detect echoes and then labels the leading edges (f). 
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Panel 4.7(a) shows the raw plasmagram image and the direct detection results 

obtained by the “zero-crossing” double differentiation operator that seeks the point of 

largest intensity gradient, Panel 4.7(b). Even though found amplitude gradients that are 

smaller than 6 dB were suppressed, the background noise captured by the RPI receivers 

still produce an overwhelming number of false edgels in Panel 4.7(b). The second row of 

the Figure 4.7 illustrates common effects of a smoothing filter that protects the 

differentiation operator from noise. The plasmagram image is smoothed with a 3x3 

median filter (Panel 4.7(c)), and then the edgel detection is done with the same algorithm 

as before. The results shown in Panel 4.7(d) indicate that the amount of smoothing is still 

not sufficient to suppress enough noise, whereas the thin traces in the upper frequency 

band are already damaged. 

The specific nature of the remote sensing data opens an opportunity for noise 

protection without smoothing, known in radar literature as echo detection. In remote 

sensing, the useful information comes from the signal returns (echoes) that are overlaid 

with the background noise. Remote sensing systems are designed to ensure that the 

echoes are detectable in the variable noise environment. A suite of adaptive (robust) 

methods has been developed to dynamically estimate the characteristics of noise 

background and apply thresholding to appropriately suppress the noise, leaving the 

echoes intact (see, for example, Schleher [1980]). The adaptive echo detection techniques 

relies on a statistical approach, where the probability distribution function of noise is 

often assumed known and its parameters are estimated from the data, for each frequency 

individually. The class of detection techniques that adjust their threshold level as noise 
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characteristics vary is often called “constant false alarm rate” (CFAR), from the early 

days when they were successful in relieving radars from excessive false alarms during 

jamming or periods of higher interference. Figure 4.8 gives an example of the adaptive 

echo detection algorithm used in Digisonde [Reinisch, 1996], which calculates the most 

probable value of the amplitude distribution to estimate the noise level.  

 
Figure 4.8. Echo detection by adaptive amplitude thresholding. (a) One 

frequency scan with intervals taken by echoes, (b) 
amplitude histogram used to determine the threshold level.  

The echo detection algorithm that selects the mode of the amplitude distribution as 

the noise level assumes that this noise level is the same for all ranges, which is not 

necessarily true in case of the RPI sounding. We use an adaptive detection algorithm 

“AvTrend” [Galkin et al., 2004] that uses a short-length surround window that slides over 

the ranges (see Figure 4.9). The AvTrend algorithm labels a pixel i as echo if its 

amplitude Ai exceeds a threshold value Ti calculated over the surround window of size N 

placed at the tested pixel. The threshold value is set to the average amplitude within the 
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window (excluding the pixel i itself) plus a fixed value D. The algorithm is designed to 

detect signals above the noise level that are narrow enough to fit within the surround 

window and leave room for the background amplitudes that produce the threshold value. 

The one-dimensional window is placed on the plasmagrams vertically to avoid influence 

of the neighboring frequencies that may have significantly different levels of noise and 

signal. The third row of Figure 4.7 shows the plasmagram processed by this algorithm 

that eliminates background noise without the artifacts of smoothing. 

 

 

Figure 4.9. Example processing with AvTrend echo detection algorithm. Sliding 
window of N=7 points is placed at the range bin shown in black. Window 
average amplitude is calculated over 6 points and the threshold is set D 
units higher. The range bin in this example is classified as echo because its 
amplitude exceeds the threshold. 



61 

 

4.4. Transition from Edgels to Rotors 

The orientation of edgels is obtained using a steerable narrow sector placed on top of 

the edgel. After a number of sector orientations is tested, the edgel orientation is set along 

the direction of maximum number of other edges found within the sector. The actual 

steering algorithm implements the so-called angular histogramming technique [Baginyan 

et al., 1994], which is a version of the linear Hough Transform (HT) reworked for a 

higher computing efficiency. The angular histogramming algorithm samples the edgel 

distribution itself instead of the parameter space as the classic HT does by fitting trial 

straight lines through all pairs of the base edgel with the neighboring edgels (Figure 

4.10). The elevation angle of the trial lines is binned to obtain a histogram of angles and 

select the angle of highest occurrence. 

 

 (a) (b) 

Figure 4.10. Use of angular histogramming algorithm [Bagynyan et al, 1994] to 
evaluate edgel orientation (example). (a) Angular histogram is built from 
elevation angle of all trial straight lines going through the base edgel and 
all nearby edgels within the circle of radius ζ. (b) The angle of highest 
occurrence in the histogram is selected as the edgel orientation. 



62 

 

4.5. Transition from Rotors to Saliency Map 

Calculation of the saliency score for an edgel (see discussion in Section 3.3.2.4) 

involves counting contributions from many other edgels in its vicinity.  The score 

calculation is commonly done for the static oriented edgels that do not change their 

orientation during the process. This scheme can benefit from the iterative optimization 

approach of the rotor models [Peterson, 1990], where the rotors have freedom to rotate 

seeking the best saliency score. Figure 4.11 shows how a single neuron in the neural 

network receives facilitating inputs from other neurons in its vicinity. The synaptic 

weights Wi are not constant; instead, they are calculated dynamically depending on 

distance and mutual orientation of two interacting rotors. The optimization process 

corrects errors of local estimates of the initial rotor orientations by extending the context 

area to a larger scale where these errors are visible. 

 

Figure 4.11. Artificial neuron for rotor interaction. 
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Previous implementations of the rotor model optimizers in high-energy physics 

[Bagynian et al., 1994] and ionospheric sounding [Galkin et al., 1996] were able to 

demonstrate successful operation on the imagery data of rather consistent quality and 

content. We first studied performance of the conventional Peterson model with the co-

circularity criterion introduced by Baginyan et al. [1994] on the RPI plasmagrams and 

then discuss improvements to the optimizer design to better handle specifics of the task. 

We will refer to the improved optimizer for RPI plasmagram processing as ANNA 

(Artificial Neural Network Algorithm). 

4.5.1. Co-circular Rotor Model Neurodynamics 

The neural optimizer by Baginyan et al. [1994] discussed in Section 3.3.2.4 reaches 

the global minimum in its energy function when the rotors are aligned tangential to the 

circle going through the interacting rotors. This is equivalent to the Gestalt principle of 

co-circularity, so we will refer to this rotor model as “co-circular”. Figure 4.12 illustrates 

this concept with a simulated edgel pattern where 8 edgels are placed on a circle.  

   
(a) (b) (c) 

Figure 4.12. Processing of a synthesized edgel pattern by a circular model of 
rotor interaction: (a) edgel pattern, (b) initial rotor placement by 
angular histogramming, (c) results of ANNA optimization.   
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Left panel of the figure shows the pattern with randomly chosen initial orientations of the 

rotors, and right panel present the results of rotor optimization by the co-circular model, 

obtained after 25 iterations with the constant temperature of 2. 

For convenience, we repeat here Figure 3.13 illustrating the algorithm of calculating 

facilitation contributions in the co-circular rotor model:  

 

Figure 4.13. Circular model for rotor network by Baginyan et al., [1994]  

The strength of interaction is maximal when both edgels are tangential to the circle 

connecting edgels i and j. The circle is determined uniquely for each pair of edgels i and j 

using the location of edgels and orientation of the post-synaptic rotor Vi. Facilitating 

contribution of pre-synaptic Vj on post-synaptic Vi  is:  

( )cos
a

j ij

ij b

ij

α′
=

V
L

C
 (4.1) 
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Here αij is angle between rotors Vi and Vj
', where Vj

' is obtained by flipping Vj around the 

chord Cij. Use of the j′V  factor assures that longer vectors give higher contributions, 

whereas factor ( )cos
a

ijα enforces co-circularity of the vectors. Finally, b

ijC
1  factor 

attenuates facilitation of more distant edgels. Parameters a and b regulate how fast the 

contribution falls with misalignment and distance. 

Study of the co-circular optimizer performance on the random initial orientation of 

the rotors identifies a stable false minimum of its energy function where the rotors are 

aligned normal to the circle instead of tangential. As can be seen from the Figure 4.14, 

the flipped vector jV ′  aligns with the post-synaptic vector Vi perfectly, so that rotors 

deviating from this orientation will be pulled back.  

 

Figure 4.14. Rotor configuration corresponding to the strong false 
minimum of the Baginyan rotor model energy. 

Because of the strong false minimum in the energy function of the Baginyan rotor model, 

it is important for the initial rotor orientation to be as close to the optimal configuration as 
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possible; otherwise the rotor network may evolve into the false minimum. It is also 

important to properly design the annealing scheme so that the mean-field theory (MFT) 

mechanism makes it possible for the network evolving to tunnel through the barriers on 

the way to the global minimum of the energy. 

It was not possible to use a fixed temperature or a static annealing scheme for 

processing of plasmagram data due to the fact that number of interacting rotors varies 

substantially from plasmagram to plasmagram. In the MFT evolving of the neural 

network, the sum of weighted inputs in the neuron goes through the sigmoid function (see 

also Figure 3.8): 

















=
∑

T

IW

O iall
ii

tanh  (4.2) 

where O is the post-synaptic neuron output, I i are the pre-synaptic neuron inputs, Wi are 

synaptic weights, and T is annealing temperature. Figure 4.15 shows the sigmoid function 

chart illustrating how inappropriate choice of temperature T may lead to saturation if the 

argument of hyperbolic tangent is greater than 1 or smaller than -1. If neurons go into 

saturation too early in the evolving process (starting temperature too small), the network 

loses its ability to tunnel through the barriers of the energy function, in which case it is 

likely to stop in a local minimum of the energy function. If the starting temperature is set 

too high, neuron outputs become insignificant at the first step of evolving and may 

remain small during the course of annealing, so that the final saliency measure is too 

small for the segment extraction algorithm to consider it. 
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Figure 4.15. Sigmoid function of the MFT neuron with region of 
optimal performance as indicated. 

To keep the neural network in the optimal operating range, ANNA annealing scheme 

uses estimates of the edgel density to calculate starting and ending temperature of 

annealing individually for each plasmagram. 

4.5.2. Improved Rotor Interaction Pattern  

The co-circular rotor interaction model (Eq. 4.1) does not work well at short distances 

due to the range jitter in the edgel data. Figure 4.16 shows a simulated example of co-

circular processing for a set of 5 edgels belonging to a straight horizontal line segment. 

The range of edgel j was overestimated because of distortions in the echo shape, which 

resulted in a weak contribution of Vj to Vi as the angle αij between flipped rotor V’
j and Vi 

is too large. 
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Figure 4.16. Close-range co-circular interaction of rotors in range 
jitter conditions (simulated example). Due to the 
overestimated  range of edgel j, contribution of rotor Vj 
to rotor Vi is too small. 

Poor performance of co-circular interaction model at short distances warrants 

introduction of a different model of interaction for rotors that are close to each other. The 

same idea can be found in other vision models (see Section 3.3.2.4) where the short 

distance interaction pattern is different from the long-distance pattern. For example, the 

Yen and Finkel [1998] model (Figure 3.7) contains a transaxial pattern for short-range 

interaction where simple parallelism constraint is used instead of the co-circularity. 

Similarly, ANNA uses the parallelism constraint for facilitation at short distances: 

 

j
ij b

ij

=
V

S
C

 (4.3) 

 

A recognized problem of saliency calculating algorithms is analysis of weak contours 

in the vicinity of strong contours. Figure 4.17 (a-b) show a simulated pattern of two sets 

of edgels belonging to two different contours, one set having a weaker saliency.  
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(a) image (b) edgels (c) initial rotors 

  

(d) optimized rotors, circular model (e) segments, circular model 

  

(f) optimized rotors, ANNA model (g) segments, ANNA model 

Figure 4.17. Saliency calculations for a weak contour in vicinity of a stronger contour 
(simulated pattern). (a) Simulated image of two traces. (b) Edgel pattern. 
(c) Initial rotor orientation. (d,e) Optimized rotor orientations and 
resulting trace segments obtained with a conventional circular model. 
Weak contour rotors are attracted to the stronger contour.  (f,g) ANNA 
model processing with added dead zones in the interaction pattern. 
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In spite of attenuation of contributions from the rotors belonging to the stronger 

contour (because they are not aligned perfectly with the weak contour), they still 

dominate the rotors of the weak contour and rotate them in a wrong direction. This 

problem happens because the summary facilitating input from the strong contour still 

exceeds total input from the member edgels if the weak contour, thus resulting in 

attraction of the post-synaptic rotors to the wrong contour (Figure 4.17 (d-e)). 

Psychophysical studies of the human vision show existence of two dead zones outside 

the co-axial pattern sector [Yen and Finkel, 1998, Guy and Medioni, 1996] (see Figure 

3.7). Typically the dead zones are added by testing the elevation angle θij between the 

chord Cij and post-synaptic rotor Vi, so that the overall facilitation pattern becomes 

,

, and 2

0, and 2

ij ij

ij ij ij ij

ij ij
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F L  (4.4) 

 

where ρ is the radius of short-term interaction, and Θ is the central angle of the long-term 

interaction sector.  

Orienting the dead zones on the direction of the post-synaptic rotor Vi has 

disadvantage of being susceptible to mistakes of calculating initial orientation of the 

edgel Vi. Instead, ANNA calculates the elevation angles of the dead zone θij between the 

chord Cij and pre-synaptic rotors Vj, not Vi. In Figure 4.18, the advantage of this 

approach is illustrated by a simulated example where it becomes possible to correct the 

local estimate of Vi orientation if the dead zones are not placed co-axial with the wrongly 
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determined Vi.  Rotor Vi in Panel 4.18(a) is not influenced by the fellow rotors of the 

same contour because they fall in the dead zones of the pattern whose orientation was 

determined by rotor Vi and used for all pairs of Vi and Vj. In Panel 4.18(b) the dead zones 

are placed individually, depending on orientation of pre-synaptic rotors in the vicinity of 

Vi, thus providing better reflection of the majority of rotors aligned to the contours in the 

plasmagram image.  

 

  

(a) (b) 

Figure 4.18. Placement of the dead zones of rotor interaction. The interaction 
pattern is oriented co-axial with (a) post-synaptic rotor Vi 

(conventional), or (b) pre-synaptic rotor Vj. In the latter case, 
error in initial evaluation of Vi orientation will be corrected 
during evolving of the neural network. 

Figure 4.17 (f-g) shows improvement of the rotor optimization on an edgel pattern 

with introduction of the dead zones. It also serves as a good illustration of advantages of 

our approach to trace extraction. Although some of the local estimates of edgel 
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orientations (Figure 4.17(c)) turn out to be wrong, the rotor optimization process refines 

them to produce a better saliency map and ultimately better trace segments. 

Finally, the saliency measure for edgel i is calculated as vector sum of all 

contributions Fij from the neighboring edgels on edgel Vi: 

 

i ij
j i≠

=∑Y F  (4.5) 

 
Thus, the saliency measure is a vector quantity reflecting both perceptual strength and 

trace orientation of the edgels. 

4.6. Transition from Saliency Map to Contour Segments 

Biophysical studies of contour extraction in mammals’ vision system show that areas 

of brain cortex stimulated by high-saliency edgels of the same contour exhibit 

synchronous excitation [Yen et al., 1999]. Common model for synchronization of 

individual saliency measures in the saliency map suggests evaluation of both alignment 

and distance between cortex cells and binding (synchronizing) pairs of cells in 

agreement. In our case, this process is best accomplished by bottom-up clustering driven 

by the rotor alignment. The clustering starts with the highest degree of alignment and 

continues until the stop value is reached. Additional measures are taken to avoid 

bifurcation during the process of joining segments together. 



73 

 

4.7. Transition from Contour Segments to Contours 

Additional grouping may be required to combine segments produced by the 

clustering algorithm. All possible segment combinations are searched exhaustively, and a 

grouping score Qij is determined for each pair of segments i and j similarly to the 

reconnection criterion of Lee and Talbot [1995] as: 

( )1 (1 )ij ij ij
ij ij ij

d
Q A G

D

α β
λ λ λ λ

π
+

= + − = + −  (4.6) 

 

The score Qij includes a connection smoothness term Aij and a connection gap term 

Gij. Coefficient λ regulates relative contribution of terms Aij and Gij to the overall score. 

The smoothness of connection, Aij, is characterized by angles αij and βij between the 

straight line connecting two segments and the straight lines fitted through the connection 

area to the segment tips. Figure 4.19 illustrates evaluation of Aij with an example where 

two segments i and j, each containing 7 points, are considered for connection. The gap 

connector line is first built, joining the end points of the segments (shown in red) with a 

straight line. Then two fit windows are placed at the end points of the segments to 

determine orientation of the segment tips in the gap area. The fit window in this example 

is 7 point wide. A straight line is fitted to the points within the window using a least-

square fit technique (shown in blue). Inclusion of the gap connector points in the fit 

window accomplishes a greater robustness to the range resolution jitter. Angles αij and βij 

are taken between the gap connector line and the lines fitted to the segment tips. 
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Figure 4.19. Evaluation of the αij and βij angles for the connection 
smoothness term in grouping score [Galkin et al., 2004].  

The connection gap term Gij in the grouping score governs contribution of the gap 

between segments, dij, to the grouping score. D is the scale parameter keeping Gij within 

the interval of (0,1). At each exhaustive trial of segment pairs for reconnection, only two 

segments with the best connection score are combined together, provided that their 

grouping score is below a fixed threshold value. The segment grouping is continued until 

no segments can be joined.  

Chapter 6 discussed performance of the trace extraction algorithms in further detail.
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CHAPTER 5. PROCESSING OF RESONANCE SIGNATURES 

The RPI plasmagrams contain not only a variety of traces pertaining to the remote 

plasma structures and boundaries, but also a suite of the local plasma resonances 

stimulated by the RPI radio transmissions. Detection and interpretation of the resonance 

signatures is a valuable diagnostic tool providing the actual electron density and magnetic 

field strength at the spacecraft location, which are needed for the accurate processing of 

the remote sensing information in the plasmagrams. Resonance matching is performed on 

the plasmagrams prior to trace extraction to remove identified resonance signatures from 

the image thereby simplifying further processing. 

5.1. Resonance Detection in Plasma Sounding Data: Previous 

Work 

Resonance signatures have been observed by a number of space missions carrying a 

topside ionosonde or a relaxation sounder. Table 5.1 and 5.2 list all missions that 

included radio transmission in plasma and collected data that could be analyzed for 

resonance signatures. The missions are roughly divided in two sections for the sounders 

capable of stepped-frequency remote sensing of the distant plasma structures and the 

relaxation sounders whose low power is enough only to stimulate resonances of the local 

plasma. 
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Table 5.1. Remote Sensing Sounders 

Mission Nation Starting Year Automatic data processing 

Alouette 1, 2 USA 1962, 1965 

ISIS 1, 2 USA 1965, 1971 

“TOPIST” 

[Huang et al., 2002] 

ISS B Japan 1978 [Igi et al., 1982] 

InterKosmos-19 USSR 1979 

Kosmos 1809 USSR 1986 

[Voevudsky et al., 1981] 

EXOS B, C, D Japan 1981, 1984, 1989 [Obara et al., 1990]  

CORONAS-I Russia 1994  

MIR Priroda Russia 1999  

IMAGE RPI USA 2000 
CORPRAL 

[Galkin et el., 2004] 
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Table 5.2. Relaxation Sounders 

Mission Nation Starting 
Year 

Operation 
regions 

Automatic 
processing 

GEOS 1, 2 USA 1965, 1968 Topside 
ionosphere 

 

ISEE 1 USA 1977 Magnetosphere, 
magnetotail, 
Solar wind 

[Trotignon et al., 
1986] 

EXOS B Japan 1978 Ionosphere, 
magnetosphere 

 

VIKING Sweden 1986 Magnetosphere  

Ulysses International 1990 Interplanetary  

Interball-2 
POLRAD 

International 1996 Magnetosphere  

Cluster 2 
Whisper 

Europe 2000 Various [Trotignon et al., 
2001] 

 

Interpretation of resonances requires matching of all observed signatures to model 

values (see Chapter 2, Section 2.2.2 for theoretical background). The matching process 

involves a certain amount of simple calculations that are time consuming to carry out 

manually. Automatic resonance matching algorithms have been developed since the early 

1980s, all using the known relations between resonance frequencies to build a resonance 
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model and fit it to the data by testing candidate combinations of the gyrofrequency and 

plasma frequency fce and fpe that drive the model. Huang and Reinisch [1982] and Huang 

et al., [2002] developed an automated resonance detection algorithm that is now a part of 

the TOPIST system for autoscaling topside ionograms from the Alouette and ISIS 

sounders [http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html]. This algorithm seeks the 

“best” combination of the X-mode cutoff frequency and the gyrofrequency that 

maximizes the amplitude sum over range bins extending to 500 km on 5 frequencies: (1) 

O-mode cutoff or local plasma frequency fpe, (2) X-mode cutoff frequency fx, (3) upper 

hybrid frequency fuh, and (4) and (5) two neighboring gyrofrequency harmonics nfce and 

(n+1)fce, selected to be close to the other resonances within the ionogram image. Igi et al. 

[1982] developed a similar algorithm for the topside sounder on the ISS-B spacecraft 

using two separate fits, one for the gyrofrequency fce, and another for the triplet  fpe, fuh, fx.  

Trotignon et al. [1986] reported successful algorithmic solutions to the task of 

extracting resonance signatures from the ISEE-1 relaxation sounder data. The ISEE-1 

satellite had a highly elliptic orbit with an apogee of ~ 23 RE (Earth’s radius = 6,375 km) 

and a perigee of 280 km and therefore observed a wide range of plasma densities in the 

solar wind, magnetosheath, magnetosphere, and magnetospheric tail. The resonance 

signatures in the magnetosphere were found to exhibit the greatest variety and present the 

greatest challenge to automated recognition. As a definite advantage for the automated 

data analysis, the ISEE-1 had an onboard magnetometer to measure the value of the 

gyrofrequency with an accuracy of ~1%. The magnetometer’s estimate of the 

gyrofrequency was further improved by fine fitting of the fce harmonics to the sounding 
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data. The candidate plasma frequency values were tested in a separate fit.  In contrast to 

the topside sounders, the best fit was sought for the series of Q-type resonances, fQn, 

using a weighted sum to favor the lowest orders of fQn. Matching of fQn was found to be 

critically sensitive to the accuracy of the gyrofrequency determination, with errors of only 

0.7% still causing misalignment of the fit. A similar matching concept was used in the 

resonance interpretation algorithm by Trotignon et al. [2001] for the Whisper relaxation 

sounder aboard the Cluster-2 spacecraft. An amplitude envelope technique developed by 

Trotignon et al. [1986] had limited success, producing unacceptably high rates of false 

resonance recognitions.  

Considering the results of previous efforts, automated detection and identification of 

the resonance signatures in the RPI plasmagrams presents a great challenge because of 

the large range of plasma densities probed by RPI in the magnetosphere and the often less 

than optimal resolution of the frequency scans. The diversity of the scientific goals that 

the RPI targets along the orbit often results in a frequency range and resolution 

unfavorable for automatic detection of the key resonance signatures. Finally, no onboard 

magnetometer measurements were available to help constrain the fce fitting procedure.  

Two avenues can be pursued regarding the recognition of the resonances, (1) 

detection of the individual resonance signatures and their subsequent classification, or (2) 

search of the optimal fitting of the composite resonance model to the entire plasmagram 

image. Both approaches are detailed and compared below. 
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5.2. Fitting composite resonance model 

 
Because of specifics of the RPI measurement scenario, the automated fitting 

algorithm cannot rely on the guaranteed presence of any particular resonance on each 

plasmagram. RPI is a versatile instrument that adjusts its sounding frequencies along the 

spacecraft orbit to match changes in the plasma density and to meet a variety of scientific 

goals. Because of dynamic allocation of the frequencies from the operating band of 3 kHz 

to 3 MHz with either constant or logarithmically changing frequency steps ranging in size 

from 300 Hz to tens of kilohertz, the RPI measurement parameters are often far from 

optimal to properly study the resonances. Compromises in the operating frequency band 

and resolution are commonly made to balance requirements for a high sounding cadence 

and long range coverage. Thus, plasmagrams may contain none of the nfce resonances or 

more than 20 of them, and the frequency resolution may be fine enough to cover the 

resonance amplitude peak with several frequency steps, or be as coarse as to completely 

miss the resonance. The fitting scheme had to be adjusted to work for a varying number 

of resonances/harmonics that may be present on plasmagrams. The coarse frequency 

resolution effects were considered by determining whether the tested resonance is too far 

from the closest plasmagram frequency. As a result, the number of frequencies whose 

summary amplitudes contribute to the total fit quality becomes different for different sets 

of the driving fce and fpe.  With a varying number of contributors at each fitting step , the 

fit quality cannot be calculated as the total sum, and therefore the “average fit” was used 

as the fit quality criterion: 
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{ }ijf  -  subset of plasmagram frequencies f corresponding to the model 

resonance frequencies calculated for the trial gyrofrequency ( )i
cef  and the 

trial plasma frequency( )j
pef , such that each model frequency of the subset 
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where ∆r is the half-width of the expected frequency band taken by the 
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where Ar(f) is linear signal amplitude of the plasmagram bin (r,f). 

 

For this fitting method to work, the true values of fce and fpe have to be in the set of 

tested combinations, and the fit has to be robust to other data features such as traces and 

interference lines. The set of trial frequencies ( )i
cef  and ( )j

pef is obtained by selecting low 

and high boundaries around the predicted model values of gyrofrequency (fce)p and 



82 

 

plasma frequency (fpe)p.  Then the frequency steps, ∆ce and ∆pe, are selected that 

determine how many trial frequencies are selected from the interval around the model 

values.  

The Geopack Model of the Earth’s magnetic field [Tsyganenko, 1990] is used to 

obtain (fce)p. Most of the time, the interval of ±5% around (fce)p is sufficient, except for 

periods of high magnetic activity at large radial distances from the Earth, when the 

interval is increased to ±40%. The prediction of the local plasma frequency (fpe)p is even 

more uncertain, especially when the spacecraft is in the vicinity of the modeled 

plasmapause or magnetopause. The actual value may be one or two orders of magnitude 

off the modeled value. To make computational matters worse, the composite model 

appears to be sensitive to even a fraction of one per cent deviations of the input fce and fpe 

from the true values, so that practically all plasmagrams require sub-pixel accuracy of the 

resonance signature localization (i.e., better than the frequency resolution of the 

plasmagram), and the trial frequency steps, ∆ce and ∆pe, are forced to be as small as 0.1 

kHz. The resulting computing time of the composite model fit becomes unacceptable in 

the framework of the interactive data analysis with the BinBrowser tool [Galkin et al., 

2001], where the scaler starts the automated resonance matching and waits for its results.  

Splitting the composite model in two separate fits, as in Igi et al., [1986], reduces the 

computing time but leads to unsatisfactory false recognition rates, primarily because of 

the sensitivity of the gyrofrequency fitting to the presence of other resonances, noise, and 

natural emission bands. Introduction of heuristics to improve noise resistance was 

attempted, but did not solve the problem. Even if there were no resonance signatures on 
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the plasmagram, the model fit approach would still give a best-fit solution.  Therefore a 

method was developed that is able to locate and match the resonance signatures when 

they are present as well as identify the lack of resonance signatures when they are absent. 

5.3. Detecting and Matching Plasmagram Resonances  

Instead of fitting the composite model of resonances directly to a plasmagram image, 

the image is first analyzed to identify frequencies that are potential resonances, and then a 

matching algorithm is applied to classify these candidates as either a particular resonance 

type or a noise (interference) line. 

5.3.1. Resonance Detection 

5.3.1.1. SMOOTHING. A great variety of noise reduction and signal enhancement 

techniques have been devised to improve the quality of signature detection in images. 

Ziou and Tabbone [1998] give a review of conventional image smoothing filters and 

arguments for their use. For this approach a novel filter was designed to improve the 

quality of resonance detection in plasmagrams, since the analysis of applicable classic 2D 

ridge detection filters [e.g., Subirana-Vilanova, 1992] showed that they tend to wash out 

and displace the subtle resonance signatures. The new 1D filter replaces each amplitude 

of the scan, Ar, with the median calculated over the amplitudes with smaller virtual range, 

F(Ar) = median{ Aj},  j = [1, r]. (5.1) 
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This concept is further referred to in the text as the “cumulative median”. The 

cumulative median filter has a smoothing scale that gradually increases with range, so 

that it applies less smoothing at the lower ranges, preserving the resonance signature 

shape, and eventually arrives at a robust estimate of the average background level for that 

frequency. Besides providing protection of further processing stages from random noise 

and jitter, the cumulative median filter enhances a particular type of signature whose 

amplitude decreases with range and suppresses all others. It is effectively matched to the 

expected shape of the resonance envelope that should have a falling slope due to eventual 

loss of the wave power. Figure 5.1 illustrates the response of the cumulative median filter 

to synthesized signals with rising and falling envelopes.  
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(a) (b) 

Figure 5.1 Response of the cumulative median filter to synthesized 
signals with falling (a) and rising (b) envelopes. The filter 
elevates the falling envelope that the resonance signatures 
are expected to display and reduces the rising slope, thus 
improving the signature contrast.  
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This filter enhances the falling shape (Figure 5.1a) and reduces the rising slope 

(Figure 5.1b), thus improving the contrast of resonances in the plasmagram. Figure 5.2 

demonstrates the noise-suppression performance of the filter applied to the same signal 

shapes with the addition of 30% white noise. In both cases the filter successfully removes 

the jitter and improves the contrast of the resonance. 

0

20

40

60

80

100

120

Range

A
m

pl
itu

de

Input

Output

 

0

10

20

30

40

50

60

70

80

90

100

Range

A
m

pl
itu

de

Input

Output

 
(a) (b) 

Figure 5.2 Response of the cumulative median filter to synthesized 
signals with falling (a) and rising (b) envelopes, with the 
addition of 30% noise. The filter smoothes the noise and 
enhances the contrast of the resonance signatures.  

Figure 5.3 illustrates the filter performance on two samples of RPI data collected (a) 

on a frequency containing a resonance, and (b) on another frequency without resonance 

but with an echo. The cumulative median filter enhances the resonance signature, 

smoothes out noise jitter, and removes the echo signature. Figure 5.4 shows a sample RPI 

plasmagram obtained on June 28, 2001 at 23:58 UT (a) before and (b) after the filtering 
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operation. Smoothing out the noise jitter and the remote echoes visually simplifies the 

resonance detection without compromising the accuracy of the frequency registration.   
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Figure 5.3  Cumulative median filter applied to RPI data: (a) a 
frequency containing resonance, (b) a frequency without 
resonance and a single echo.  

Resonance 

Echo 
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 (a)  (b) 

 

 (c)  (d) 

Figure 5.4 Resonance detection in RPI plasmagrams. (a) Raw 
plasmagram, (b) Processing with the cumulative median 
filter. (c) Summary amplitude function (white bars), labeled 
frequencies containing resonances (gray bars) and detected 
peaks (black bars). (d) Localized resonance signatures 
shown in magenta. 

Gray and black bars 
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5.3.1.2. LABELING. After applying the cumulative median filter, the next processing 

step is the resonance signature labeling that tags the frequencies containing resonances 

using pattern recognition methods. A two-step labeling procedure is used, where 

frequencies that contain no resonances are first excluded, and then frequency groups are 

identified that belong to the same resonance. A frequency is excluded from the resonance 

analysis if its amplitude envelope does not display the appropriate decay with time. This 

is determined by evaluating the slope of the straight line fitted to the envelope using the 

least-square fitting technique. This procedure is used together with receiver saturation 

criteria that prevent elimination of strong resonances that do not show the expected 

amplitude decay. Saturation artifacts are occasionally observed for measurements with 

high receiver gains. At any particular fixed base gain, the system dynamic range is 

determined by the bit resolution of the voltage digitizer (12 bits = 72 dB) and choice of 4, 

8, and 16-chip phase code waveforms that can add up to 24 dB of dynamic range after 

pulse compression. The total dynamic range then varies from 72 dB (plain pulse 

waveform, fixed gain) to 126 dB (16 chip waveform, 30 dB range of the autogain 

adjustment). Commonly the resonance study plasmagrams are made at a smaller dynamic 

range setting: (a) pulse compression is not used as it suppresses the plasma waves that do 

not have appropriate phase code, and (b) the autogain evaluation is disabled as it requires 

an additional 200 ms per frequency that becomes a considerable overhead for the 

resonance study measurements. To avoid loosing resonances due to the saturation we do 

not exclude any frequencies where 90% of the amplitudes are above the saturation 

threshold. 
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After exclusion of all frequencies without resonance signatures, the frequency 

intervals belonging to the same resonance signatures are determined by collapsing the 

image intensities along the vertical axis and seeking the peaks of the resulting summary 

amplitude function, S(f). The status line on top of the plasmagram in Figure 5.4(c) shows 

valid frequencies in gray, and the peaks identified in black.  

5.3.1.3. CONTRAST EVALUATION. To further improve the robustness of the 

matching algorithm, a measure of contrast is calculated for each signature identified, so 

that stronger signatures contribute more to the fit quality. To determine the contrast, the 

average amplitude of the signature is compared to the average background amplitude. A 

statistical technique of differential histogramming was used to distinguish resonances 

from the background.  In Figure 5.5, the lower amplitude histogram is built using all the 

amplitudes from all the range bins in each frequency step contained in a narrow ±1 kHz 

band around the resonance peak frequency, and the upper histogram is calculated over a 

wider ±2.5 kHz band that is guaranteed to include both resonance and background noise. 

Subtracting histogram 1 from histogram 2 leaves only background amplitudes, and their 

upper boundary defines the amplitude threshold for the resonance detection. Figure 5.3(d) 

shows in magenta the amplitudes exceeding the threshold. After the signature is 

localized, its contrast against the background is calculated by averaging the gradients 

between the tagged amplitudes and their immediate neighbors. 

The resonance detection procedure labels a subset of plasmagram frequencies as 

potentially belonging to resonances, and determines tentative location and contrast of the 

resonance signatures. This information enters the interpretation algorithm that matches 
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the frequencies to their theoretical counterparts. The matching starts with identification of 

the resonances produced at the gyrofrequency and its harmonics. Without knowledge of 

the actual value of fce, further interpretation of the plasmagram resonances is impossible. 

 

Figure 5.5  Use of the differential histogramming technique to estimate 
the local detection threshold for the resonance signature. 

5.3.2. Matching the Gyrofrequency Resonances 

At this point of the analysis, a list of detected resonance-like signatures and a 

predicted value of the gyrofrequency, (fce)p, exist. The task then is to find nfce resonances 

in the list and thus determine the actual value of fce. A number of trial ( )i
cef  values around 

the predicted value can be examined to determine which one produces the best match. 

This fit is different from the previously considered composite or separate model fitting 

tasks in that the pattern recognition analysis has provided the actually detected resonance 
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signatures. Only those frequencies contribute to the fit that are labeled as containing a 

resonance, and the resonances of higher contrast contribute more to the fit quality. 

Analysis of the RPI plasmagrams for the gyrofrequency harmonics showed that they 

do not always match perfectly to multiples of fce. One of the causes of this mismatch is 

the change of spacecraft location (and therefore fce) during the plasmagram measurement, 

which is typically 1-3 minutes. The fitting scheme was modified to correct the higher 

orders of nfce for the expected change in the magnetic field strength as the spacecraft 

changes its location. Another consideration was given to possible localization errors and 

to insufficient frequency resolution that prevents separation of neighboring resonances. 

Figure 5.6 illustrates the general principle of selecting matching signatures next to a trial 

frequency, where first preference is given to the closer actual plasmagram frequency.  

 

 

 

 

Figure 5.6  Choice of the actual plasmagram frequencies next to the 
trial frequency. If the closest frequency is not tagged as 
containing a resonance, the other frequency contributes to 
the fit quality with a reduced weight. 

If, however, the closest frequency is not identified as valid (i.e., containing a resonance), 

the other frequency, if valid, is allowed to contribute to the fit with a lower weight. Both 

Frequency 

Plasmagram 
frequency fn+1 

Plasmagram 
frequency fn

Trial frequency

∆- ∆+ 
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plasmagram frequencies are tested if they are still within the expected frequency band 

occupied by the resonance through analysis of their deviations from the trial frequency, 

∆+ and ∆-.  

5.3.3. Matching the Plasma Frequency Resonance 

Fitting of the plasma frequency is affected by the same problems discussed above for 

the gyrofrequency fit: (a) insufficient frequency coverage and resolution, (b) changes in 

the medium during the plasmagram measurement time, (c) need for sub-pixel accuracy of 

the frequency determination, (d) prediction errors. In addition to these common issues, 

the model equations describing dependencies of the Q- and D-type resonances on the 

plasma frequency, are only approximate. For example, equation (2.2) for the Q-type 

resonance frequencies does not always apply to the plasma in the magnetosphere that 

may contain a hot component in addition to the (dominant) cold population. In a plasma 

that is not described by a Maxwellian distribution, the best match of Q type resonances 

based on equation (2.2) will yield fpe and fuh values that are not likely to match any of the 

resonances in the plasmagram [Benson et al., 2003a]. Our present algorithm does not 

include a match of resonances to the Dn frequencies given by (2.3). 

Figure 5.7 shows examples of fully automated resonance processing with the 

algorithm developed here.   
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The scaled values are compared with predicted fce values based on the Tsy 96-1 

magnetic-field model [Tsyganenko, 1996] and the ad-hoc fpe model [Reinisch et al., 

2001]. For the three examples, all resonance signatures were recognized and matched 

correctly. The modeled fce values agreed closely with the measured values, whereas for 

fpe, large differences between the predicted and observed values were observed, 

signifying that the plasma conditions were significantly different from the model. As a 

result, fuh, fz, and fx were also very different from the model. Use of the high frequency 

resolution in the plasmagram in the central panel allowed to observe an approximate 1% 

mismatch of the model Qn resonances, which is comparable to the observational 

uncertainty but may also be caused by deviations of the plasma distribution from the 

Maxwellian assumed in the expressions used for Qn.  

5.4. Discussion of Results 

The three major features that led to successful automated interpretation of the 

resonances are (a) use of pattern recognition techniques to detect and evaluate resonance 

signatures prior to matching, (b) accounting for changes in the medium during the time 

required to acquire a plasmagram, and (c) use of the cumulative median filter for 

enhancement of the resonance signatures. The new algorithm now correctly and reliably 

interprets a wide range of scenarios found in RPI plasmagrams. Whereas the overall 

quality of gyrofrequency automatching is satisfactory, it is often difficult to correctly 

identify the plasma frequency resonance. In the case of the former, there is a harmonic 

sequence that aids the autodetection algorithm and there is a fairly reliable model to 



95 

 

constrain the search criteria. In the case of the plasma frequency, neither is available. 

While the observed magnetic-field strength can be higher than the quiet-condition model 

by tens of percent on disturbed days, the deduced electron density can differ from the 

model by factors of ten [Benson et al., 2003b].   

Mismatches fall into three general categories, (1) no match can be found because the 

medium gradients are different from predicted ones, (2) key signature(s) are either 

outside the plasmagram coverage or they are obscured, (3) a false match is selected due 

to errors by the resonance signature detector. 

5.4.1. Errors in prediction of medium gradients 

Noticeable mistakes in predicting the general gradient of gyrofrequency, ∆fce, are very 

rare. It is more common to observe natural fluctuations in the magnetic field that cause 

occasional mismatches of fce harmonics in plasmagrams taken with high frequency 

resolution. The frequency bin selection technique discussed in Section 3.2 allows 

mismatched harmonics to still contribute to the quality of the fit if their deviation does 

not exceed one frequency step. The gradient of the plasma frequency, ∆fpe, is frequently 

predicted incorrectly in the vicinity of the plasmapause because of the difficulty in 

accurately modeling the location and gradient at this boundary.  

5.4.2. False decisions by the signature detector 

While selecting plasmagram frequencies as resonances based on the amplitude decay 

pattern (Section 3.1.2) discriminates against interference lines, it can also eliminate 
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resonances that do not display any significant amplitude decay over the listening time 

interval in the plasmagram. It is difficult to select the tagging criterion optimally so as to 

minimize both false positive and false negative decisions; the current choice is to allow 

false “valid” frequencies to enter the matching phase rather than to remove good 

signatures. Although the contribution of such false frequencies to the fit is typically small 

because of their low contrast against the background, they still increase the likelihood of 

wrong matches. 

5.4.3. Key resonance signatures missing or obscured 

The automatching algorithm works best when there are a few distinct resonance 

signatures present in the plasmagram so that the fit quality maximizes when the model 

and the measurements match. If the frequency coverage is not sufficient to include 

enough signatures in the plasmagram, the best fit may not correspond to the correct 

answer. Also, when the nfce and fQn separation is not significant (for low ratios of 

pe cef f ) the matching may not be optimal because it relies completely on the proper 

identification of fpe and fuh which can fall outside the frequency coverage or can be 

overlapped by other resonances. Proper interpretation of such cases often requires 

analysis of the previous and following plasmagrams to confirm changing patterns as 

plasma conditions change. Such an analysis, as well as the inclusion of the Dn 

frequencies in the matching routine, remains to be done. 
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5.5. Unmatched Resonance Study 

After the resonance matching is complete, there still may be detected resonance 

signatures left unmatched. Unmatched signatures fall into four categories: 

1. True signature unmatched to a known resonance frequency because of 

deviations of plasma from assumed Maxwellian distribution causing observed 

difference from the model.  

2. True signature unmatched to a known resonance frequency because of wrong 

prediction of fce or fpe gradients within the time of plasmagram measurement.  

3. False positive decision by the signature detector. 

4. True signature of unknown nature. 

The unmatched resonances are stored in the mission database for further studies. 

5.6. Removal of Resonance Signatures 

All identified resonance signatures are removed from the plasmagram image to 

simplify analysis of traces. The pixels belonging to a signature were previously identified 

as a part of contrast evaluation (Section 5.3.1.3), and now they are set to a “missing data” 

value to exclude them from further analysis. 
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5.7. Conclusion 

Detection and interpretation of the resonances in RPI plasmagrams stands as an 

important diagnostic tool and a necessary step towards further interpretation of the 

remote sensing information contained in these records. Automation of this procedure 

relieves the RPI data analyst from tedious calculations. The method described in this 

thesis presents a novel approach to automated resonance detection and interpretation in a 

plasma environment with large variability like the one encountered by the RPI instrument 

on IMAGE. Implementation of this approach into the BinBrowser data visualization and 

analysis tool [Galkin et al., 2001] has made it possible to automatically scale all of the 

approximately 600 plasmagrams recorded every day by RPI. The algorithm could also 

become a useful tool for on-board processing of future active plasma-wave instruments.   
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CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY 

The trace extraction and resonance automatching algorithms have been implemented 

in a Cognitive Online Rpi Plasmagram Ranking ALgorithm (CORPRAL) [Galkin et al., 

2004]. The CORPRAL system operates in a research mode where its performance can be 

evaluated step-wise on both synthesized patterns and actual plasmagram data, as well as 

in a batch mode online with the RPI mission database to process newly acquired 

plasmagrams arriving daily from Goddard Space Flight Center (NASA) and submit 

extracted traces and resonances to the database where they are available for queries. This 

chapter discusses various aspects of CORPRAL performance. 

6.1. Performance Study 

Table 6.1 summarizes the parameters that need to be determined for CORPRAL 

operations. For each listed parameter, Table 6.1 provides a brief explanation how the 

parameter changes the algorithm performance and a general concept of selecting the 

optimal value. Sections of the Chapter 4 containing a more detailed description of the 

algorithms are also given. The CORPRAL parameters are divided into four groups, (1) 

AvTrend echo detection, (2) oriented edgel evaluation, (3) ANNA segment extraction, 

and (4) perceptual grouping of segments. A suite of synthesized patterns was designed to 

test robustness of the algorithms, study parameter sensitivity and determine optimal 

settings for the CORPRAL.  
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Table 6.1. CORPRAL parameters. 

Name Symbol Definition Effect Considerations 

AvTrend Echo Detection 

1. Detection 
threshold 

D Fig. 4.9 Higher D results in less signal   

2. Detection 
window length 

N Fig. 4.9 Smaller N increases sensitivity 
to small features in the image 

Determines the scale of 
analysis 

Oriented Edgel Evaluation 

3. Context area 
radius  

ζ Fig. 4.10 Higher ζ increases scale of 
analysis 

Smaller scale increases 
sensitivity to jitter; larger 
scale looses detail 

ANNA Segment Extraction 

4. Rotor 
misalignment factor 
for long-distance 
interaction 

a 4.1 Higher a causes smaller 
contribution from poorly 
aligned rotors 

An estimate can be found in 
human vision research data 

5. Attenuation with 
distance  

b 4.1, 4.3 Higher b causes distant rotors 
to contribute less 

6. Long-distance 
cutoff radius 

R - Smaller R decreases size of 
co-axial pattern 

R and b determine scale of 
analysis. (R is introduced 
for computational 
efficiency) 

7. Short-distance 
zone radius 

ρ 4.4 Smaller ρ makes transaxial 
pattern smaller 

Needs to be large enough to 
accommodate range jitter 

8. Coaxial pattern 
central angle 

Θ 4.4 Larger Θ makes dead zone 
smaller 

An estimate can be found in 
human vision research data 

9. Annealing 
regime 
temperatures 

Tstart, 
Tstop 

4.2 , 
Fig.4.15 

Smaller T brings MFT neuron 
closer to saturation areas of 
sigmoid function 

Annealing scheme needs to 
be adaptive to avoid 
premature saturation or 
fading (Section 4.5.1) 

10. Clustering 
threshold 

L - Lower L causes merging of 
clusters of less alignment 

Merging segments is done 
better at perceptual 
grouping stage  

Perceptual Grouping of Segments 

11. Relative 
contribution 
coefficient 

λ 4.6 Higher λ weighs smoothness 
of the connection over the gap 
length 

 

12. Gap scale  D 4.6 Higher D attenuates 
connection gap term 

 

13. Score threshold Q - Higher Q rejects more 
connections 

 

 

Robust performance of the algorithms on the imagery data of highly variable nature is 

one of the greatest challenges of the computer vision models. Devising an algorithm that 
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would be able to process a particular plasmagram correctly is an attainable task; using the 

same algorithm to process successfully any other plasmagram remains a challenging task. 

Robustness studies indicate that the greatest difficulty lies in adapting algorithms to the 

variable scale of signatures. Though slow compared to computers, the natural vision 

processor analyses the same input on multiple scales in parallel, selecting the highest 

saliency among all scales. The current version of the CORPRAL is designed for 

deployment on consumer-grade computing platforms that are not optimal for parallel 

multiple scale analysis. Although single scale analysis is prone to errors, the adaptive and 

optimizing qualities of CORPRAL help to accommodate typical range of the plasmagram 

signature scales. Extension of our current approach to the multiple scale treatment of the 

problem does not pose any difficulty in principle. Related to the issue of non-optimal 

scale selection is the problem of insufficient resolution, corresponding to the case of 

algorithm scale being larger than the feature scale. Robustness to the deviation from the 

minimal scale and artifacts of low resolution were studied on a suite of synthesized 

patterns. 

6.1.1. ANNA Performance on Synthesized Patterns 

Figure 6.1 shows a typical test pattern we use to study gap bridging and the noise 

protection features of the ANNA segment extractor and perceptual grouping algorithm. 

This pattern presents certain difficulty to the saliency calculation techniques, as it does 

not comply with the constant curvature constraint of the Gestalt perception. Figure 6.1(a) 

shows pattern of echoes (as resulted from the echo detection) created manually using the 

interactive pattern editor of CORPRAL.  
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(a) detected echoes (simulated) (b) edgels 

 

  
(c) oriented edgels (d) optimized rotors  

  
(e) segments (f) grouping results 

  
(g) contours (h) final  result 

Figure 6.1. Simulated pattern containing a single trace with gaps 
and noise.  
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Pixel resolution in x (frequency) and y (range) axes are shown in the upper right insert 

of Figure 6.1(a). Using the simulated echo pattern, the edgels are obtained by selecting 

their leading edge (lower pixel) as shown in Figure 6.1(b). Figures 6.1(c) and (d) 

illustrate the rotor optimization process. Initial orientation of the edgels shows a few 

errors due to the locality of the edgel processing, subsequently improved by the ANNA 

algorithm.  Using the optimized rotor pattern, contour segments are extracted as shown in 

Figure 6.1(e), and the perceptual grouping algorithm is run to attempt their connection. 

Thus the contours obtained, shown in Figure 6.1(f), pass final quality control that 

evaluates smoothness, length, and percentage of gaps in each contour to reduce false 

positives (Figure 6.1(g)). This result is shown in Figure 6.1(h) superimposed on the 

original echo pattern. 

Smaller scale of analysis can be set by decreasing context area radius ζ of the angular 

histogramming and adjusting coefficients b and R regulating the attenuation of 

contributions with distance in ANNA (see Table 6.1). Figure 6.2 illustrates how changes 

of the analysis scale influence initial placement and optimization of rotors for the same 

pattern as in Figure 6.1(c) and (d). Smaller scale affects ability to bridge gaps in larger 

scale contours; larger scale results in engagement of all rotors, including those that are 

not part of any contour. Subsequent processing compensates in part both problems: 

perceptual grouping can bridge gaps in the smaller scale results, and segment clustering 

avoids connecting false edgels in the larger scale data. Also, rotor optimization results 

shown in Figure 6.1(d) and Figure 6.2(e) are obtained using an identical fixed annealing 

regime with linearly decreasing temperature T from 12 to 0.1 in 50 steps.  
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SMALLER SCALE   LARGER SCALE   

  
(a) oriented edgels (d) oriented edgels 

 
 

(b) optimized rotors (e) optimized rotors  

  
(c) results (f) results 

Figure 6.2. Processing of the same pattern as in Figure 6.1 at 
smaller (a-c) and larger (d-f) analysis scales.  

Since the scale of optimization is larger in the latter case, a higher stopping temperature 

can be used to avoid fast saturation of the neurons. Figure 6.3 illustrates the advantage of 

selecting a more appropriate annealing regime with the stopping temperature of 4 instead 
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of 0.1. Implementation of an algorithm for selecting the appropriate annealing regime 

based on the choice of analysis scale and estimates of density of echoes allows good 

performance at larger scales and low sensitivity to the selection of the scale parameters ζ, 

b and R.  

  
(a) optimized rotors (b) results 

Figure 6.3. Processing of the same pattern as in Figure 6.2(d) with a 
more appropriate annealing regime (stop temperature 
increased to prevent premature saturation due to a 
larger scale of analysis). 

Figure 6.4 shows another typical test pattern with two closely spaced traces that are 

difficulty to separate for the saliency algorithms that are based on the static oriented 

edgels, especially if the locality scale is not optimal. It can be seen from Figure 6.4.(c) 

that orientations of many edgels are initially obtained incorrectly due to a strong 

influence of the nearby contour, which would result in poor saliency calculations if it 

were not for the rotor optimization processing, Figure 6.4(d). Analysis of another test 

pattern containing a short weak contour in vicinity of a longer contour is illustrated in 

Figure 6.5. 
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(a) detected echoes (simulated) (b) edgels 

    
(c) oriented edgels (d) optimized rotors 

  
(e) contour segments (f) contours 

Figure 6.4. Sample pattern containing two closely spaced traces with 
some minor gaps and noise. 

   

(a) echo pattern (b) optimized rotors (c) contours 

Figure 6.5. Processing of weak short contours in vicinity of a strong 
contour.  
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The test in Figure 6.5 was used to study the ability of ANNA to separate low-saliency 

features in the presence of nearby high saliency features, which has been a known 

difficulty of the static pattern saliency algorithms. 

6.1.2. ANNA Performance on Plasmagram Data 

Figure 6.6 illustrates the processing stages on the RPI plasmagram taken on March 1, 

2002 00:02:58 UT. Raw plasmagram image is processed by the AvTrend adaptive echo 

detection algorithm to select all pixels belonging to echoes arriving from remote plasma 

structures (Figure 6.6(b)). Using detected echo data, edgel locations are evaluated, as 

shown in Figure 6.6(c), and rotor initialization and optimization process is applied to 

build the saliency map shown in Figure 6.6(d). Bottom-up clusterization is then used to 

derive contour segments from the saliency map (Figure 6.6(e)). The perceptual grouping 

algorithm is applied to chain qualifying segments together to form the traces shown in 

Figure 6.6(f). All six found traces are then submitted to the RPI mission database as 

expert knowledge data derived by CORPRAL. 

6.2. Plasmagram Processing Results 

The implemented version of CORPRAL works online with the RPI database of 

telemetry, derived, and expert knowledge data [Galkin et al., 2001], delivering traces and 

expert ratings from the ~600 plasmagram images arriving daily. The CORPRAL results 

can be queried remotely from online BinBrowser workstations over the Internet to bring 

up subsets of plasmagrams that contain traces. By March 1, 2004 CORPRAL has tagged 

138,074 out of 842,674 plasmagrams.  
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(a) Raw plasmagram image (b) Echoes 

  
(c) Edgels (d) Saliency Map 

 
 

(e) Trace Segments (f) Traces 

Figure 6.6. Example of processing stages for RPI plasmagram taken on 
March 01, 2002 00:02:58 UT. The raw plasmagram (a) is 
thresholded to obtain echoes (b), which are then reduced to the 
edgels (c). The edgel orientations are obtained and optimized to 
derive the saliency map (d) of the image. The saliency measures 
are analyzed to obtain trace segments (e) that are then combined 
together to form traces (f). 
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Further insight into the subset of CORPRAL-selected plasmagrams can be achieved 

by using the number of found traces as the query parameter. Figure 6.7 shows a sample 

subset of plasmagrams taken in July 2001 that contain 6 traces or more. Querying one 

month of ratings takes a few seconds to complete. 

   

   

   
 
 

Figure 6.7. Some of July 2001 plasmagrams selected by CORPRAL as 
containing 6 traces or more. 
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CHAPTER 7. CONCLUSIONS AND OUTLOOK 

In this chapter we summarize the main results of the thesis and discuss possible 

directions for future research. 

This work was originally inspired by the practical need of locating scientifically 

significant data records in the large archive of RPI plasmagrams. The research eventually 

sharpened its focus on robust performance of the pre-attentive vision models presented 

with imagery data of highly variable content and quality. Based on previous results of 

trace recognition in ionograms and early experiments with the RPI plasmagrams, the 

choice of algorithmic approaches to the trace recognition was narrowed down to the 

techniques that analyze edge elements (edgels) detected in the image collectively, looking 

for subsets of edgels that form salient contours. Much effort was taken in this thesis to 

identify weaknesses of saliency calculation approach that became apparent as we applied 

it to the real-world data, and then to improve the method.  

Low signal to noise ratio, range jitter, and discretization artifacts due to insufficient 

resolution of the plasmagram images cause problems with the local estimate of edgel 

orientation that is required for the saliency calculations. Errors in the edgel orientations 

propagate to the saliency measures that are directly based on relative orientation of the 

edgels and therefore are sensitive to imperfections of direction calculation. The major 

improvement of the collective edgel analysis was achieved by allowing edgel orientations 

to change in the process of iterative optimization of the edgel alignment. Edgels that can 
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change orientation were named rotors, in recognition of previously known studies of 

rotor models that optimize mutual rotor alignments under the co-circularity restriction 

governing the process of rotor interaction. The co-circularity restriction of the 

conventional rotor models was then revised to reflect modern understanding of the pre-

attentive vision concepts that suggests existence of trans-axial pattern of interaction based 

on simple parallelism and dead zones of interaction outside the co-axial pattern cone. 

These modifications resulted in a remarkable enhancement of the algorithm performance 

compared to both static edgel saliency calculators and classic rotor models. Further 

studies suggested revision of the trans-axial pattern to better handle the range jitter in 

plasmagrams and placement of the dead zones on the pre-synaptic rotors instead of the 

central post-synaptic rotor to allow optimization process to correct errors in local 

estimation of edgel orientation. Other enhancements were also suggested to avoid false 

minima of the energy function of the optimizing neural network and to adapt simulating 

annealing scheme to the image features. 

Introduction of the rotor optimization layer in the perceptual analysis of salient 

contours involves a significant increase of computations. Direct implementations of the 

combinatorial optimization schemes that handle all detected edgels are rather exceptional 

for the reason of high computational demand. An important part of this thesis was to find 

a pre-processing scenario that would reduce the number of detected edgels in the image 

with a minimal trade-off in terms of associated false negative and positive decisions. 

Investigations of the available approaches to noise reduction showed that conventional 

smoothing is inapplicable to plasmagrams because of its damaging effect on the traces 
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that are commonly thin and faint, and an adaptive thresholding was chosen instead to 

preserve only those features in plasmagram that stand out against the background.  

Special attention in this thesis was given to the task of locating, identifying and then 

the removal of the resonance signatures as a part of the plasmagram pre-processing. 

Conventionally, the resonance processing employs a best-fit matching of the resonance 

frequency model to the raw plasmagram image by testing a range of trial electron plasma 

and cyclotron frequencies. The conventional approach failed to produce reliable results 

because of specifics of the RPI scientific mission that exposes the instrument to highly 

variable plasma and magnetic field conditions. A greater degree of robustness was 

achieved by implementing a resonance signature detector to eliminate contributions from 

the frequencies that do not display the anticipated decay of the resonance wave energy. 

Additional performance enhancement was accomplished by setting contributions to the 

fit proportional to the contrast of resonance signatures against the background.  

All developed algorithms were implemented in a CORPRAL system that processes 

RPI plasmagrams on a daily basis as they arrive from the IMAGE operations center at 

Goddard SFC. The results of CORPRAL analysis are stored in the mission database that 

can be queried with a variety of search criteria to select plasmagrams with signatures. 

Pre-attentive vision has been drawing attention of researchers since the 1950s. 

Understanding of visual information processing in the retina and brain cortex, a Nobel 

Prize result, has spawned a generation of biologically plausible models replicating the 

key components of this analysis. We plan to seek further enhancements of the 

CORPRAL by bringing its design closer to the solutions developed over the million years 
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of evolution. In particular, we are fascinated by the natural system of parallel analysis of 

the same image at multiple scales with subsequent fusion of the results, a concept that 

could provide robust detection of both spread and thin traces in plasmagrams. Noise 

protection can be improved by complementing the facilitating interaction of the rotors 

with the inhibitive counterpart that apparently has been discovered in the brain cortex. 

Edgel analysis can be improved by implementing 2D techniques that analyze data 

integrity across frequencies. It must be beneficial to preserve a greater amount of image 

information in rotors (such as edge gradient, color, scale width) so that their interaction 

can be made more efficient. Other optimization vehicles, such as the linear threshold 

neural networks, should be attempted to make use of the expanded set of edgel 

characteristics. Alternative combinatorial techniques can be studied for the task of 

compilation of aligned rotors into contour segments. Finally, the segment grouping 

algorithms can be improved by introducing higher order interpolating functions to 

evaluate the segment connection score. These measures shall prepare us for the next 

important step in our research, modeling of the attention-driven recognition of contours 

in images. 



114 

 

REFERENCES 

Alter, T.D., and R. Basri (1998), Extracting salient curves from images: an analysis of the 
saliency network, IJCV, 27, 51-69. 

Baginyan, S., A. Glazov, I. Kisel, E. Konotopskaya, V. Neskoromnyi, and G. Ososkov 
(1994) Tracking by a modified rotor model of neural network, Comp. Phys. Comm., 79., 
165-178. 

Benson, R.F., V. A. Osherovich, J. Fainberg, A. F.-Vinas, and D. R. Ruppert (2001), 
An interpretation of banded magnetospheric radio emissions, J. Geophys. Res., 106, 
13,179-13,190. 

Burch, J.L. (Ed.) (2000) The IMAGE Mission, Kluwer Acad.Pub., Dordrecht, 506 pp. 

Canny, J.F. (1986), A computational approach to edge detection, IEEE Pattern Analysis 
Machine Intelligence, 8, 679-698. 

Cook, G.W., and E.G. Delp (1995), Multiresolution sequential edge linking, Proc. 
IEEE Int. Conf. Image Proc, Oct 23-26, 1995, Washington, 41-44. 

Denby, B. (1988), Neural networks and cellular automata in experimental high energy 
physics, Comp. Phys. Comm., 49, 429-448. 

Durbin, R. and D. Willshaw (1987), An analog approach to the traveling salesman 
problem using an elastic net method. Nature, 326, 689. 

Elder, J.H. (1999), Are edges incomplete? Int. J. Comp. Vision, 34, 97-122. 

Fox, M.W., and C. Blundell (1989), Automatic scaling of digital ionograms. Radio 
Science, 24, 747-761. 

Freeman, W.T., and E.H. Adelson (1991), The design and use of steerable filters, IEEE 
Trans., PAMI-13 , 891-906. 

Galkin, A.I. (1962) Some aspects of automatic processing of vertical incidence 
sounding data (in Russian), Geomagn. Aeron., 2,  782-790. 

Galkin, I.A. (1987) Software development in support of automatic processing of 
vertical incidence ionograms. I. Ionogram preprocessing., SibIZMIR Comm. #20-87, 
USSR Acad. of Sci., Sib. Division, Irkutsk. 17pp. (in Russian) 



115 

 

Galkin, I.A. (1992) On the problem of automatic scaling of vertical incidence and 
backscatter ionograms, Proc. ISAP-92, Sapporo, 1197-1200. 

Galkin, I.A. (1995) Neural networks for recognition of ionogram traces, M.S. Thesis, 
51 pp, University of Massachusetts, Lowell, MA. 

Galkin, I.A., B.W. Reinisch, G.A. Ososkov, E.G. Zaznobina, and S.P. Neshyba (1996) 
Feedback neural networks for ARTIST ionogram processing, Radio Science, 31, 1119-
1129. 

Galkin, I.A., G. M. Khmyrov, A. Kozlov, B.W. Reinisch, X. Huang, and G. Sales 
(2001), New tools for analysis of space-borne sounding data, Proc. 2001 USNC/URSI 
Nat. Radio Sci. Meeting, Boston, MA, 304. 

Galkin, I.A., B.W. Reinisch, X. Huang, R. F. Benson, and S. F. Fung (2004a), 
Automated diagnostics for resonance signature recognition in RPI plasmagrams, (to 
appear in Radio Science). 

Galkin, I.A., B.W. Reinisch, G. Grinstein, G. M. Khmyrov, A. Kozlov, X. Huang, and 
S. F. Fung (2004b), Automated Exploration of the Radio Plasma Imager Data, 
(submitted to Journal of Geophysical Research). 

Gonzalez, R.C., and P. A. Wintz (1987), Digital image processing, 2nd edition, 
Addison-Wesley, Reading, MA. 

Guy, G., and G. Medioni (1996), Inferring global perceptual contours from local 
features. IJCV, 20, 113-133. 

Hancock, E. and J.Kittler (1990), Discrete Relaxation, Pattern Recognition, 23, 711-
733. 

Hough, P.V.C. (1962), A method and means for recognizing complex patterns. US 
Patent 3,069,654. 

Hopfield, J.J. (1982), Neural networks and physical systems with emergent collective 
computational abilities, Proc. Natl. Acad. Sci. U.S.A., 79, 2554-2558. 

Huang, X. and B.W. Reinisch (1982), Automatic calculation of electron density profiles 
from digital ionograms. 1. Automatic O and X trace identification for topside 
ionograms, Radio Science, 17, 421-434. 

Huang, X., B.W. Reinisch, D. Bilitza, and R.F. Benson (2002), Electron density 
profiles of the topside ionosphere. Annals of Geophysics, 45, 125-130. 



116 

 

Igi, S., K. Aikyo, R. Nishizaki (1982), Efficient coding and resonance spike 
identification for topside ionogram processing, Memoirs of National Institute of Polar 
Research. Special Issue, 22, 140-154.  

Igi, S., and K.Aikyo (1986), Automatic identification of resonance spikes for 
ionograms obtained by ionospheric sounding satellite-b (ISS-b), J.\Radio Res. Lab., 33, 
169-175. 

Itti, L., C. Koch, and E. Niebur (1999), A model of saliency-based visual attention for 
rapid scene analysis, IEEE Tran. PAMI, 20, 1254-1259. 

Kalviainen, H., P. Hirvonen, L. Xu, and E.Oja (1995), Probabilistic and non-
probabilistic Hough transforms – overview and comparisons. Image and Vision 
Computing, 13, 239-252. 

Kittler, J., and J. Illingworth (1985), Relaxation labeling algorithms – a review, Image 
and Vision Computing, 3, 206-216. 

Lai, K.F., Deformable contours: modeling, extraction, detection, and classification 
(1994), PhD dissertation, University of Wisconsin-Madison. 

Laptev, I., H. Mayer, T. Lindeberg, W. Eckstein, C. Steger, and A. Baumgartner 
(2000), Automatic extraction of roads from aerial images based on scale-space and 
snakes. Machine Vision and Applications, 12, 23-31. 

Lee, T.C.M. and H.Talbot (1995), A fast method for detecting and matching linear 
features in images. Proc. DICTA-95, 649-654. 

Mallat, S (1989), Multifrequency channel decompositions of images and wavelet 
models. IEEE Trans. Inform.Theory, 37, 2091-2110. 

Marr, D. (1976), Early processing of visual information. Phil. Trans. R. Soc. Lond., B-
275, 483-524.  

Marr, D., and H.K. Nishihara (1978), Visual information processing: Artificial 
intelligence and the sensorium of light, Technology review, 81, 2-23. 

Marr, D., and E.Hildreth (1980), Theory of edge detection, Proc. R. Soc.London, B-
207, 187-217. 

MacLennan, B. J. (1991), Gabor Representations of Spatiotemporal Visual Images, 
Technical Report CS-91-144 (Knoxville: University of Tennessee Computer Science 
Department); accessible via URL http://www.cs.utk.edu/~mclennan. 

Morgan, M. and W. Evans (1951), Synthesis and analysis of elliptic polarization loci in 
terns of space-quadrature sinusoidal components. Proc. IRE, 39, 552-556. 



117 

 

Muresan, L., R. Muresan, and G.A. Ososkov (1997), Deformable templates for circle 
recognition. Proc. SPIE Symp. Aerospace/Defense Sensing, Simulation and Control, 
20-25 April 1997, Florida, 3007, 723-733. 

Nelson, R.C. (1994), Finding line segments by Stick Growing, IEEE Trans. Pattern 
Analysis and Machine Intelligence, 16, 519-523. 

Obara., T., K. Syutoh, T. Kato, et al., A new system for operation and data handling of 
Akebono (EXOS-D) satellite (1990), J.Geomag. Geoelectr., 42, 565-577. 

Ohlsson, M., C. Peterson, A. Yille (1992), Track finding with deformable templates – 
the elastic arm approach. Computer Physics Communications, 71, 77. 

Osherovich, V.A., and R.F. Benson (1991), The lower subsidiary diffuse plasma 
resonances and the classification of radio emissions below the plasma frequency. 
J.Geophys.Res., 96, 19,331-19,341. 

Pelillo, M., and A.M. Faneli (1997), Autoassociative learning in relaxation labeling 
networks, Pattern Recognition Letters, 18, 3-12. 

Peterson, C. (1989), Track finding with neural networks, Nucl.Instr.Meth.Phys.Res., 
A279, 537-545. 

Peterson, C. and J.R. Anderson (1987), A mean field theory learning algorithm for 
neural networks, Complex Systems, 1, 995-1019.  

Posner, M.I., and Y. Cohen (1984), Components of visual orienting, Attention and 
Performance X, Lawrence Eplbaum Associates Publishers, London, 531-556. 

Pulinets, S.A., and R.F. Benson (1999), Radio frequency sounders in space. Review of 
Radio Science, Ed. W. Ross Stone, Oxford University Press, 711-733. 

Rangarajan, A. (1997), Self-annealing: unifying deterministic annealing and relaxation 
labeling, Energy Minimization Methods in Computer Vision and Pattern Recognition, 
M.Pelillo and E.R.Hancock, ed., Springer-Verlog, Berlin, 229-244. 

Reinisch, B.W. (1996), Modern Ionosondes, in: Modern Ionospheric Science, European 
Geophysical Society, 440-458. 

Reinisch, B.W., Haines, D.M., Bibl, K., Cheney, G., Galkin, I.A., Huang, X., Myers, 
S.H., Sales, G.S., Benson, R.F., Fung, S.F., Green, J.L., Boardsen, S.,  Taylor, W.W.L., 
Bougeret, J.-L., Manning, R., Meyer-Vernet, N., Moncuquet, M., Carpenter, D.L., 
Gallagher, D.L.,  and Reiff, P. (2000),  The Radio Plasma Imager investigation on the 
IMAGE spacecraft, Space Science Reviews, 91, 319-359. 



118 

 

Reinisch, B.W., G.S. Sales, D.M. Haines, S.F. Fung, and W.W.L. Taylor (1999), Radio 
wave active Doppler imaging of space plasma structures: Arrival angle, wave 
polarization, and Faraday rotation measurements with the radio plasma imager. Radio 
Science, 34, 1513-1524. 

Reinisch, B.W., X. Huang, P. Song, G.S. Sales, S.F. Fung, J.L. Green, D.L. Gallagher, 
and V.M. Vasyliunas (2001), Plasma Density Distribution Along the Magnetospheric 
Field: RPI Observations from IMAGE, Geophys. Res. Ltrs., 28, 24, 4521-4524. 

Rock, I., and S. Palmer, The legacy of Gestalt psychology, Sci. American, SCA9012, 
84-90, 1990. 

Rosenfeld, A., R.A. Hummel, S.W. Zucker (1976), Scene labeling by relaxation 
operations, IEEE Systems, Man, Cybernetics, 6, 420-433. 

Schleher, D.C. (1980), Automatic Detection and Radar Data Processing, Artech 
House, Dedham, MA, 636 pp. 

Shashua, A., and S. Ullman (1988), Structural saliency: the detection of globally salient 
structures using a locally connected network, 2nd ICCV, 321-327. 

Strand, R.C. (1972), Optical-image recognition for experiments in the track chambers 
of high-energy physics, Proceedings of IEEE, 60, 1122-1137. 

Subirana-Vilanova, J.B., and K.K. Sung (1992), Multi-scale vector-ridge-detection for 
perceptual organization without edges. A.I.Memo No,1318, Artificial Intelligence 
Laboratory, MIT, Cambridge, MA, 48 pp. 

Trotignon, J.G., J. Etcheto, and J.P. Thouvenin (1986), Automatic determination of the 
electron density measured by relaxation sounder on board ISEE 1. J. Geophys. Res., 91, 
4302-4320. 

Trotignon, J.G., P.M.E. Decreau, J.L.Rauch, et al. (2001), How to determine the 
thermal electron density and the magnetic field strength from the Cluster/Whisper 
observations around the Earth. Annales Geophysicae, 19, 1711-1720. 

Walsh, D. and A.E. Raftery (2001), Accurate and efficient curve detection in images: 
the Importance Sampling Hough Transform, Tech. Rep. No. 388, Dept. Statistics, 
University of Washington, Seattle, WA. 24 pp. 

Warren, E.S., and E.L. Hagg (1968), Observation of electrostatic resonances of the 
ionospheric plasma, Nature, 220, 466-468. 

Wersing, H., J.J.Steil, and H. Ritter (2001), A competitive layer model for feature 
binding and sensory segmentation of features. Neural Computation, 13, 357-387. 



119 

 

Wolfram. S.(ed.) (1986), Theory and Applications of Cellular Automata. World 
Scientific. pp. 

Xu, L., E. Oja, and P. Kultanen (1990), A new curve detection method: Randomized 
Hough Transform (RHT). Pattern Recognition Letters, 11, 331-338. 

Yen, S.C. and L.H. Finkel, Extraction of perceptually salient contours by striate cortical 
networks. Vision Research, 38, 719-741, 1998. 

Yen, S.C., E.D. Menschik, and L.H. Finkel, Perceptual grouping in striate cortical 
networks mediated by synchronization and desynchronization. Neurocomputing, 26-27, 
609-616, 1999. 

Yosida M. (1989), Automatic scaling of ionospheric parameters, Rev. Comm. Res. Lab., 
35, 33-40. (in Japanese) 

Yuille, A.L. (1990), Generalized deformable models, statistical physics, and matching 
problems. Neural Computation, 2, 1. 

Ziou, D., and S. Tabbone (1998), Edge detection techniques – an overview, Int. J. 
Pattern Rec. & Image Analysis, 8, 537-559. 
 
 
 
 


