Robert Pappalardo¹ Brian Cooke¹ Barry Goldstein¹ Louise Prockter² Dave Senske¹ Tom Magner² ¹Jet Propulsion Laboratory, California Institute of Technol ²Applied Physics Laboratory, Johns Hopkins University Pre-Decisional — For Planning and Discussion Purposes Only. Copyright 2013. All rights reserved # The Europa Clipper Overview and Science Robert Pappalardo Project Scientist # Acknowledgement This report represents the combined effort since April 2011 of the Europa Science Definition Team and a study team from the Jet Propulsion Laboratory (JPL) and Johns Hopkins University's Applied Physics Laboratory (APL). The team acknowledges and appreciates the support of NASA's Program Scientist and Program Executive. ### Overview ### Where we left off - Submitted report to NASA in December 2012 on "Enhanced" (including reconnaissance) Europa Orbiter and Europa Clipper concepts - Briefed OPAG in January 2013 ### Major events since last OPAG meeting - Europa Science Advisory Group in place, with Prockter as chair: - > Bills, Blaney, Blankenship, Hoehler, Lorenz, McGrath, Mellon, J. Moore - Barry Goldstein named Europa Clipper Project Manager - Congress directed NASA to use FY13 funds to continue Europa mission concept development - NASA directed continued evaluation of only the Clipper concept - NASA released ICEE NRA to aid in retiring instrument risk - Top-priority mission trades are being considered and worked - Reconnaissance traceability and mission concept are being matured - Notional trajectory updated to improve the science potential # Europa:Ingredients for Life? provide energy for life? tell of habitability below? # Europa Clipper Science ### Goal: Explore Europa to investigate its habitability ### Objectives: - Ice Shell & Ocean: Existence and nature of water within or beneath the ice, and processes of surface-ice-ocean exchange - Composition: Distribution and chemistry of key compounds and the links to ocean composition - Geology: Characteristics and formation of surface features, including sites of recent or current activity # Science Traceability Matrix | Goal | | Objective | Investigation | |--|-------------|---|---| | Explore Europa to investigate its habitability | ll and Ocea | including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange. | IO.1 Characterize the distribution of any shallow subsurface water and the structure of the icy shell. IO.2 Determine Europa's magnetic induction response to estimate ocean salinity and thickness. IO.3 Search for an ice-ocean interface. IO.4 Correlate surface features and subsurface structure to investigate processes governing material exchange among the surface, ice shell, and ocean. IO.5 Determine the amplitude and phase of gravitational tides. IO.6 Characterize regional and global heat flow variations. | | a to investig | ıposit | Understand the habitability of Europa's ocean through composition and chemistry. | C.1 Characterize the composition and chemistry of the Europa ocean as expressed on the surface and in the atmosphere. C.2 Determine the role of Jupiter's radiation environment in processing materials on Europa. C.3 Characterize the chemical and compositional pathways in Europa's ocean. | | Explore Europ | olog | Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. | G.1 Determine sites of most recent geological activity, and characterize localities of high science interest. G.2 Determine the formation and three-dimensional characteristics of magmatic, tectonic, and impact landforms. | # Model Payload # Innovative Mission Concept Utilize multiple satellite gravity assists to enable "global-regional coverage" of Europa while in orbit around Jupiter Current mission design consists of 45 low-altitude flybys of Europa from Jupiter orbit over 3.5 yr Minimizes time in high radiation environment (2.1 Mrad TID*) Simple repetitive operations ### Geological activity: - Characterize high-interest areas - Seek signs of recent activity Europa high-resolution topography: 10 m vert. Elevation model by B. Giese Stereo imaging can elucidate geology and recent activity # Composition & chemistry: - Composition and chemistry on surface and in atmosphere - Radiation effects - Chemical and compositional pathways from the ocean Infrared and neutral mass spectroscopy can derive surface and atmospheric composition to understand habitability ### Ice shell characteristics: - Shallow water - Ice-ocean interface - Material exchange - Heat flow variations Ice-penetrating radar can find water in and beneath the icy shell ### Ocean characteristics: - Magnetic induction (ocean salinity & thickness) - Gravitational tides (k₂) Gravity and magnetometry can confirm and characterize the ocean # Magnetometry from Flybys - From flybys, Europa Clipper could measure response at the 2 periods with largest input amplitude, necessary to infer ocean salinity and thickness - 11.2 hr (Europa synodic period); 85.2 hr (Europa orbital period) # Gravity and Magnetometry from Flybys Europa Clipper flybys sample a wide range of true anomalies and Jupiter longitudes to enable gravity (k₂) and magnetic (induced field) measurements # Gravity Science from Flybys Assuming nominal Doppler error, parametric evaluation predicts gravity requirement $\sigma(k_{22}) < 0.05$ can be met # Comprehensive Surface Coverage Globally Distributed Regional Coverage by Model Instruments ### Reconnaissance for a Future Lander Landing Site Safety and Scientific value # Reconnaissance Traceability Matrix | Go | al | | Objective | Investigation | |---|----------|---|--|--| | Safe and Scientifically Compelling
Future Lander Mission to Europa |)a | | of surface hazards, the | SL.1 Determine the distribution of blocks within a potential landing site at scales that represent a hazard to landing. | | | g Safet | of the surface, the | SL.2 Determine the distribution of slopes within a potential landing site over baselines relevant to a lander. | | | | | | SL.3 Determine distribution of roughness elements (e.g., scarps, steps, cracks, divots, cusps, spires, etc.) within a potential landing site at scales that represent a hazard to landing. | | | | SSio | Lan | | SL.4 Characterize the regolith cohesiveness and slope stability within a potential landing site. | | | W | | | SL.5 Determine the regolith thickness and whether subsurface layering is present within a potential landing site. | | | ander | Value | composition of surface materials, the geologic context of the surface, the potential for geologic activity, the proximity of near surface water, and the | SV.1 Characterize the composition and chemistry of potential landing sites with an emphasis on understanding the spatial distribution and degradation state of endogenically derived compounds. | | | Future L | | | SV.2 Characterize the potential for recent exposure of subsurface ice or ocean material vs. degradation of the surface by weathering and erosion processes and provide geologic context for potential landing sites. | | | a Fu | | | SV.3 Characterize the potential for shallow crustal liquid water beneath or near potential landing sites. | | Characterize
Sites for a | :
:1e | potential for active upwelling of ocean material. | SV.4 Characterize anomalous temperatures (significantly out of equilibrium with expected nominal diurnal cycles) indicative of current or recent upwelling of ocean material at or near potential landing sites. | | | Chara | Sites | | | | ## Operations Concept Simple and Repetitive #### 1. Magnetometer and Langmuir Probes - Continuous measurements #### 2. ShortWave InfraRed Spectrometer (SWIRS) - Global low res. scan below 66,000 km - Targeted high res. scan below 2,000 km - Passive observations below 1,000 km #### 3. Thermal Imager - Pushbroom thermal imaging below 60,000 km #### 4. Gravity Science - Measurements below 28,000 km #### 5. Topographical Imager (TI) - Lower res. pushbroom imaging between 4,000 and 1,000 km - Pushbroom stereo imaging below 1,000 km #### 6. Ice Penetrating Radar (IPR) - Surface scans below 1,000 km #### 7. Mass Spectrometer (NMS) - In situ scan below 1,000 km #### 8. Reconnaisance Camera - High res. imaging below 105 km # The Europa Clipper Mission Concept Brian Cooke Project System Engineer # Europa Clipper Model Payload # New Spacecraft Tank Configuration ### Nested Vault / Distributed Tanks - Most beneficial to Orbiter Mission Concept where significant fuel remain in tanks during Jovian tour - Difficult to analyze shielding benefit of residual fuel - More difficult to manage CG during maneuvers - More complicated mechanical design ### Stacked Tanks / Vault - Much simpler mechanical design; easier to analyze - Easier to manage CG during maneuvers - More mass required for vault shielding, but simpler mechanical design results in less net mass ### Modular Spacecraft Design - Implementation flexibility - Parallel integration paths - Module level integrated testing during Phase C - Isolates implementation issues at the module level - Robust schedule management - Decouples qualification testing until late in integration flow - Smooth funding profile - Allows flexible phasing of module implementation schedules - This minimizes peaks in project funding profile # Radiation Mitigation Strategy - "Toe dip" into the highest radiation zone near Europa - Shielded vault protects the most sensitive electronics # Radiation Mitigation Strategy - "Toe dip" into the highest radiation zone near Europa - Shielded vault protects the most sensitive electronics ### Power Source Options ### **MMRTG:** Multi-Mission Radioisotope Thermoelectric Generator - Demonstrated high reliability - 238Pu available to support 2021 mission is not assured - Mass and cost impact bounded by Solar and ASRG options ### Solar: Foldout Panel Solar Arrays - Technical issues must be resolved before determining feasibility for Europa Clipper - Reliability uncertain in high radiation, eclipse cold soak environments - Highest mass, lowest cost solution ### **ASRG:** Advanced Stirling Radioisotope Generator - Recommended by Planetary Decadal Survey - Technical issues need resolution for compatibility with Europa Clipper - Reliability not yet demonstrated; high per unit cost ### VEEGA Interplanetary Trajectory NASA Baseline: Atlas V 551 #### Gravity assist interplanetary trajectory with annual launch opportunities - 21 Day launch period opens Nov. 21, 2021 - Venus/Earth/Earth Gravity Assist - Arrive Jovian System April 4, 2028 # The Europa Clipper Path Forward Barry Goldstein Project Manager ### Potential Advantages of SLS Launch Option ### **Outer Planet Research: Advantages of SLS** - Science-driven exploration requires 'rapid' response to discovery - Long cruise time to Jupiter makes rapid response problematic - Direct trajectory via SLS could cut cruise to Jupiter to <2 years ### **Europa Clipper: Accrued Advantages of SLS** - Clipper Launch in June, 2022 arrives in January 2025 - Seven month development reserve, and arrives 3 ¼ years earlier - Enables significant mass margin - Annual launch opportunities - Eliminates thermal design challenge of Venus flyby and significant safety precautions for Earth flybys ### Atlas V vs SLS Trajectories ### Atlas V 551: VEEGA | Time of flight: | 6.4 years | |--------------------------|----------------------------| | Earth Flybys: | 2 | | Sun Closest
Approach: | 0.6 AU | | C3: | 15 km²/s² | | Launch Capability: | 4494 kg
(41%
Margin) | ### **SLS Advantages** - Time Of Flight: -57% - Avoids Venus thermal environment - Eliminates Earth flyby nuclear safety concern - 45% mass margin for current concept | Time of flight: | 1.9 years | |--------------------------|------------------------------------| | Earth Flybys: | 0 | | Sun Closest
Approach: | 1.0 AU | | C3: | 82 km ² /s ² | | Launch Capability: | 6087 kg
(45%
Margin) | Pre-Decisional — For Planning and Discussion Purposes Only. ### Europa Clipper Concept Summary ### Objectives: - Ocean: Existence, extent, salinity - Ice Shell: Water within or beneath; nature of surface-iceocean exchange - Composition: Key compounds; links to ocean composition - Geology: Surface feature formation; sites of recent or current activity - Reconnaisance: Surface characteristics at lander scales ### Model Payload: - Ice-Penetrating Radar - Topographical Imager - Infrared Spectrometer - Neutral Mass Spectrometer - Gravity Science Antenna - Magnetometer & Langmuir Probes - Reconnaissance Camera - Thermal Imager ### **Operations Concept:** - 45 low-altitude flybys from Jupiter orbit - Investigation of globally distributed regions - Simple and repetitive science operations - Minimal time in high radiation environment ### Validated Cost Estimate: Aerospace validated cost: \$2.1B (\$FY15 w/s²/)