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LECTURE 1
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The standard linked chained paradigm of Solar-Terrestrial Research (STR) is:
Sun- Corona - Solar Wind -+ Magnetosphere - lonosphere -+ Thermosphere

By the end of this series, it will be replaced by the bilaterally
interactive paradigm of STR:

Sun 2 Corona @ Solar Wind 2 Magnetosphere 2 lonosphere 2 Magnetosphere

But we will start with the standard paradigm and pick it up where the solar wind contacts
the magnetosphere -- the magnetopause.
We will conclude by noting that the unsolved problem of how the solar wind couples to the

magnetosphere prevents our predicting by a numerical code the magnetospheric condition
corresponding to a given solar wind condition.



MAGNETOPAUSE =
ANON-INTERACTIVE,STRUCTURELESS,TANGENTIAL DISCONTINUITY

Historically there have been two phases to magnetopause modeling:
1. a non-interactive phase, and
2. an interactive phase.

1. Non-Interactive Phase: Magnetopause = Structureless Tangential Discontinuity
This phase has two parts

A. Vacuum magnetosphere, and
B. Magnetosphere with current sheet.

A. Magnetopause is like an inert membrane separating solar wind plasma on
the outside from a vacuum, geomagnetic field on the inside.
Two problems: i Topology of field lines
ii. Shape of magnetopause.

L. Solved by Chapman and Ferraro (1931)
(In general, topology problems are solved by superposition of fields.)
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1.A.ii. The Shape of the Chapman-Ferraro Magnetopause

formed by a hypersonic solar wind hitting the geomagnetic dipole field.
Two conditions:

1. momentum balance:

2
pcosy = _55_ at magnetopause
ko

outside pressure = inside pressure
2. Tangential Discontinuity: By =0

The problem is well posed, can be formulated analytically, and solved numerically

to arbitrary accuracy, for arbitrary tilt of the dipole relative to the solar wind
(Olson, 1969).
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1.B. The T.D. Magnetopause with Magnetic Tail.
Again there are two problems:

I topology, and
il. shape.

1.B.i. Topology.
Taking the approach of superposition of fields, there are in this case three fields:
1. the earth's dipole,
2. a uniform field representing the tail, and

3. animage dipole + uniform field representing the magnetopause currents.

The dayside push of the solar wind bares the closed-field-line magnetospheric
torus to the magnetosheath. The nightside pull of the solar wind forces the lobes
together and traps the tail current between them, forming an interior current sheet.
The magnetosphere is no longer current free, and must contain plasma to carry
the current. The trapped tail current sheet is a continuation of the tail boundary

current sheet and, in effect, brings the influence of the boundary directly into the
interior of the dual-lobe tail. |
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1.B.i. The Problem of shape:

Extra Factors:

1. Intenal plasma must be self-consistently represented.

2. Open and closed field lines require separate physics to specify By, at
midplane and the down-tail boundary condition.

3. Need static pressure in solar wind to confine open field lines.

No complete (3D), self consistent (plasma + field), solution to the global (CF + Tai
problem with closed magnetopause exists.



1 B.il. Continued

A 2-D, non-self consistent (only open field

lines-no plasmay), complete (CF + Tai) 3
solution exists i

4

/7
Unt and Atkinson (1968) (\\

L1 -
' 123 4 5

Features: Shows qualitative relation between open flux in the tail, the distance to

the sunward edge of the tail current, the flaring of the tail, and the erosion of the

dayside. As the amount of open flux increases (as a model parameter), the current
sheet moves sunward and the boundary ﬂares out behind and moves in in front

Model incorporates the qualitative aspects of the global instability model of the
magnetospheric substorm.
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The only 3-D model of this type was presented by Coroniti and Kennel in 1972.
As in the Unti-Atkinson 2-D model, for a given flux in the tail, it gives the flare and shape
of the tail boundary and the distance to the inner edge of the current sheet: the flare
and shape from local force balance at the boundary, and the distance to the inner edge of
the current sheet from the global force balance between the solar wind's push on the tail
and the earth's pull on the tail. Also as in the 2-D model, no flux crosses the current
sheet. Thus the plasma is not included. The model is quasi-global in that it is not self-
consistently matched to the C-F currents. The physics is approximate and does not lend
itself to computer encoding with accuracy determined by computer limitations.

This model is extensively used to relate polar cap flux measurements to tail parameters.

Many more quantitative empirical and theoretical models of the tail field, some including
the plasma self-consistently, have been developed subsequently. But they do not have
realistic solar wind boundary conditions, and do not self-consistently attach to the
magnetosphere, nor to the dayside magnetopause. Nonetheless, one important result of

global consequence comes out of these 3-D tail models: they predict dayside erosions
too small by more than a factor of 2.



2.

Interactive Phase: M jnetopause =
transport boundary layers, rotational discontinuities, and expansion fans.

Three general classes of observations led researchers to abandon the non-interactive,
structureless, tangential discontinuity model of the magnetopause:
1. circulation of magnetic flux from the dayside to the tail and back,

2. energy dissipation within the magnetosphere and ionosphere, and
3. variable amount of open flux.

Within a T. D. magnetopause model, 1. and 2. require boundary layers on closed field
lines to transport momentum and energy from the solar wind into the magnetosphere
and from there to the ionosphere. The 3rd class of observation requires variable
merging with the IMF, thus B # 0 at the magnetopause. MHD structures that satisfy

Bn# 0 and perform the functions of observations 1 and 2 are rotational discontinuities
and slow mode expansion fans.

To answer these observational imperéﬁves, there arose two qualitatively different classes
of models: A low-latitude, closed-field-line boundary-layer models, and
B. high-latitude, open-field-line R. D. and S. M. E. F. models.

In addition to these, a third type of magnetopause plasma feature, called the entry layer,
was discovered observationally. It is associated with the high latitude, noon cusps,
which are apparently vulnerable to direct entry of magnetosheath plasma.



2. A Types of low latitude boundary layers . ansport phenomena

1. Anomalous Diffusion
2. Drift injection
3. Kelvin-Helmholtz waves

4. Impulsive penetration.

Observations:

1.

2,

:h

Closed field line boundary layer exists in presence of open field line "window"
at higher latitudes.
It maps to the dayside portion of an annulus bordering the open field line polar cap.

Tangential momentum transfer adds new force to be considered in determining shape.
The problem has not been solved.

All but gyro-viscosity insensitive to sign of IMF B;.
Magnetospheric circulation and energy dissipation strongly sensitive to sign of IMF B;.

Closed-field-line magnetic flux transported tailward in the boundary layer does not induce
tailward motion of open field lines.at higher latitudes.

The tailward transport of open field magnetic flux exceeds that in the boundary layer
typically by more than a factor of five. (This ratio is probably highly variable.)

Direct measurements of rate of tailward transport of magnetic flux in the low latitude
boundary layer gives an upper limit of about 20% of total rate of flux transport.
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2.B. Non-T.D. Magnetopause.
- Two problems:

.. topology, and
ii. structure,

2.B.i. Topology.

If By = 0, the magnetosheath wind will continually carry the penetrating flux tailward, thus
producing a time dependent retum to a B = 0 situation, or requiring continual conversion of
closed to open field lines to constantly feed to the magnetosheath wind. Topologically that
conversion must take place at a neutral point or a neutral line at the magnetopause. A second
(though non-topological) requirement is that MHD must be violated by some dissipative process
in a volume that contains the neutral point or neutral line, where the actual conversion of closed
to open field lines takes place. We saw that in the case of the T.D. magnetopause with tail, the

neutral line starts on the boundary of each flank at points too far tailward of the earth to be
useful for merging at the dayside magnetopause.

Finite thickness magnetopause and southward extemal field produce continuous neutral
line. Cusp opens to a true cleft, and maps to a finite dayside merging line in the ionosphere.

The length of this line doubtless depends on the strength of the external field, but it has not
been calculated.
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2.B. Structure of high-la..tude, open-field-line
magnetopause.

Features:

1. Merging region where local dissipation processes violate MHD and allow the IMF
(shown here to be purely southward) to link onto geomagnetic filed fines.

2. Outside of the non-MHD, merging region, a R.D. pivots the IMF to give it the right
orientation to link onto the geomagnetic field.

3. AS.M.EF. continuously transforms the high-particle-density, low-field-strength
conditions that characterize the magnetosheath plasma into the low-particle-density
high-field-strength conditions that characterize the magnetosphere and tail.

4. Magnetic energy is converted into thermal and flow energy in the nose part of the
magnetopause. (This is a “load” in the language of circuit theory.) Flow energy
is converted into magnetic energy and Poynting flux at the tail magnetopause
(a “dynamo”) (MHD electromechanical energy conversion theorem

B
—jO-E)=aat 2|,lo+V.§

The total energy consumed by the boundary load is less than generated by the
boundary dynamo.

3. The problem of shape not solved.
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2.A&B. Synthesis of High and Low Latitude
Boundary Models.

The consensus view is that the tail boundary comprises a T.D. bounding closed field
lines at low latitudes and a S.M.E.F. propagating into open field lines at high latitudes.
Together they camy the tail boundary current from the dusk side to the dawn side. But one
s thin and the other is thick. How do they join to make a composite tail? The answer to
this question is a first step toward a quantitative model of the complete tail boundary.

The figure shows one proposal that solves the problem. The thickness of the S.M.E.F.
Is a strong function of the initial inclination of the entering magnetic field. The draping
of the IMF around the tail boundary, as pivoted by the R.D. into the S.M.E.F.'s plane,
automatically changes the inclination to make the fan thin at the juncture.

This boundary model is dynamic. The juncture propagates poleward at the Alfven
speed. Thus the width of the open field line window decreases down the tail (Stem) and
the tail cross section elongates in the direction of the IMF (Sibeck et al.).

Note inconsistency with T.D. model: cleft goes equatorward.
Note mapping to ionospheric p.c. boundary.
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