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T1E MACROSCOPIC EQUATIONS OF A PLASMA
1.1. From Tarticles to Fluids

Continuum mechanics is that branch of physics that treats the
motions of infinitely deformable matter. It embraces hydrodynamics,
aerodynamics, magnetohydrodynamics (MHD) , and magnetogasdynamics. The
firet two differ in that the former 1is incompressible and the latter
compressible fluid dynamics. The prefix, magneto, signifies the addi-
tion of the ponderomdtive'force(colloquially called the J-cross-B force)
to rhe usual pressure gradient, gravitational and viscous forces of
fluid dynamics. Magnetofluid mechanics applies to fluids that can carry
electrical currents, such as liquid metals and plasmas. OQur interest in
Solar System MHD is confined to the latter.

in contrast to particle mechanics and rigid body mechanics, the
mass on which the forces act in continuum mechanics is distributed
throughout gome volume of space, and any portion of the distributed mass
can in principle move in an arbitrary direction or manner relative to
any other portion. This has as one of its consequences the necessity of
including the coordinates of space among the independent variables; and
thus the equations of continuum mechanics are partial differential equa-
tions 1imn space and time rather than ordinary differential equations in

time.

The dependent variables of hydro- and aerodynamics are velocity (a
vector), mass density (a scalar) and pressure (usually a scalar but some-
times a tensor). In magnetohydro- and magnetogasdynamics, one adds the
magnetic field, and in magnetogasdynamics the occasions when the pres—
sure must be treated as a tensor are more Common.

for those who are concerned with applying the equations of con-
tinuum mechanics to describe the behavior of the oceans or the atmos-—

phere, there are instruments that measure directly the required depen—

dent variables, such as wind and pressure. The winds of space generally



greatly exceed those which occur in the troposphere. The solar wind
traverses in one second a three hour track of the hurricane wind. Yet
the plasmas of space are so tenuous that the pressures they exert even
with the full force of their winds are immeasurable by direct pressure
The instruments for measuring the properties of plasmas
in space take advantage of the fact that the individual particles that
comprise the "eontinuum'' there are electrically charged. These instru-
menta either detect the charges of the particles individually or collec—
tively as an electrical current. There is then a gap between the depen-
jont variables that enter into the equations of continuum mechanics and

The gap must be filled by mathematical proces-—
cing of the data, in order to go from information about the individual
particles to information about the fluid that they constitute in their
buik. There is a formalism that treats this problem specifically. This
formalism begins with the phase space density.

sensing devices.

rhe measured variables.

Le &

? Phase Space Density

Tt is necessary to specify the physical state of our collection of
individual particles precisely. The physical state of a particle is
given by its mass and charge, which are known constants (we treat only
the non-relativistic case), its position ¥ and its velocity ¥. There-
fore six independent numbers are needed to fix the physical state of a
particle, (%1, X9, %3, V1, V2, V3), where the subscripts denote the
three independent orthogonal axes of configuration and velocity space.

We may think of the six numbers as being the coordinates of the particle

in a six-dimensional space, called phase space.

=

1f we were so to locate each particle of our plasma, we would build
up a uon-homogeneous distribution of points occupying some portion of
phase space., In virtually all problems that are concerned with the be-
havior of space plasmas on a macroscopic scale, the number of particles
Thus, it is meaningful to speak of a density of
points in phase space, f(x,v), which is a function of the six independ-
ent variables, and when multiplied by the six~-dimensional volume element
a3xd3v gives the number of particles with coordinates that lies in the
range (X1, X2, X3, V1> V2, v3) to (x3 + dxy, x, * dxp, %3 + dx3, V3 + dvy,
vy + dvy, v3 *+ dvy). Since we must allow for the change of the distri-

bution with time, the phase space density is actually a function of
The quantity f as we have de~-

seven independent variables, (X, v, t)e
fined it is also referred to as the single particle distribution func-

tion.

ig truly enormous.

1.3 The Continuity Equation in Phase Space

. 3 . » + —’
The number density in six-dimensional phase space 1s f(x, v), to
. . . - -
which we can formally assign a current, viz. X f + v f, analogous to
. . > A .
the particle current or flux given by nv in usual language. Applying

the generalized conservation principal
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where Q is any density, Vy s the divergence in n-space and Vn is
n-space velocity, to f we find

of 9 . ) .
C = e 4 o— :
P = B O £) L
i i
in whigh the summation convention is used (i.e. aibi = albl+a2b2+33b3).
Since X, = Vy and v, = ¥, /m, (1.2) can be written
of i3
- ol = \Y g P
e (v ) + Vv. ( . £) (1.3)
where V= rﬁL ; + w§- g + ; and g ig the unit vector
v ad ava vy 3’ i
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corresponding to the 1th coordinate.

The only forces toO which our individual particles are subject
are the gravitational and Lorentz forces
- - > - -
';=‘~mg;+qn.+qvx}3 (1.4)
is the electrical charge on the particle. (The only other
a+ this fundamental, single particle level are the weak and
. forces of nuclear interaction, with which we are not concerned.)

We now proceed to reduce (I.3) to a more gpecific form. Since X

and v are independent variables, we may set V(¥ £) = 7.V f. Also it
is evident that Vy * (m g} = VV . (qE) =0 since none of m, &, 9> or
7 depends on V. Finally
e = - > > >
7 . q(vxB) =g EEE i <) B (Vv x B)
v v v
RBut both curls vanish, therefore
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1.4 The Boltzmann Equation

We have until now ignored the effects of collisions. We can in-

clude them by noting that the effect of a collision is to relocate a
particle along the velocity axes of phase space "instantaneously'.
Therefore we may represent the effect of collision by adding & separate

collision term tO (1.5) as follows:

>
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ot u m vV £ = ot )coll

(1.6)



This form of the conservation equation is referred to as the Boltzmann

equation.
1.5 Liouville's theorem:
Tn the absence of collisions, (I.6) becomes

df
v dt

= 0 (1.7)
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with the meaning that f is constant as it is convected with the parti-
1
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1.6 Torming the Macroscopic Variables

o]

we cousider two component gas composed of positive and negative
ions. which we take to protons and electrons in practice. The charge,
{5 then either + e or -e, where e is the value of the electronic

charge. The macroscopic or bulk quantities are then formed from the

phase space density as follows:

-

mass density p =L m f f d3 v (1.8)
e a a a
chargr density p =7 e f f d3 v (1:9)
c a a a
el - 3
bulk veloci V== 1 .
Bulk velosiey ¢ S e st am i) v f oo (1.10)
-> —> 3
current density J =L f v £ d v (1.11)
- — a a a
3
roggure e = 3 - -
pressure tensor Pij L m f (vi Vi) (vj Vj) fa d” v (1.12)
e i 1 sl > =2 3
internal emergy u =7 Trace (P) = 5 g m f (v - V) fa d” v (1.13)
. - -
heat flux vector 4q =‘l T om f (v - V)2 (3'— v) f d3 v (1.14)
- 2 a a a

where a is an index with values 1 and 2 for the two components.

One can see that the macroscopic variables are constructed out of
appropriate velocity moments of f. Mass and charge density result from
the zeroth velocity moment, bulk velocity and electrical current density
from the first moment, pressure and internal energy are related to the
second moment, and the heat flux vector to the third moment.

1.7 Derivation of the Macroscopic Equations

Tf we were given continuous measurements of f for all regions of
space, or if f were computed from the Boltzmann equation and a compre=
hensive set of initial measurements, the preceding relations could be
used to determine any of the macroscopic quantities of interest at any
rime and place of interest. 0f course, neither procedure is practical,
and even if it were, it would be wasteful, since f contains information



on the distribution of the particles in velocity space, which is
completely ignored in the macroscopic variables. Phase spaceé density
is a function of seven variables, whereas the macroscopic quantities
depend on only four. There is a great advantage then, if one is in-
terested only in the macroscopic quantities, to find equations to pre-
dict subsequent values of the macroscopic variables from some initial
set which is specified by a model or obtained from a definite set of
measurements of f. What we require 1is the macroscopic analog of the
Roltzmann equation for f. Since in the macroscopic description there
are a number of dependent variables, it is evident that more than one
such analog is needed. We have noted that the macroscopic variables
are obtained from f through the operation of taking velocity moments.
[t ig natural then to seek the desired macroscopic equations by taking
velcciny moments of the Boltzmann equation.

Wivh the foregoing motivation, we may proceed in 2 strictly formal

+. and define the n-th moment operatoT M, operating on any quantity
ression designed by the symbol [---] by

m
M[...]7 = é ~;%- J v? ["']ad3v, n=0,1,2""° (1.15)

. e g 2 0
the summation convention is implied, 1i.€. (v.) =7V, (Vi) =V V.,
We apply this operator to the Boltzmann equad ion in the form B
is most convenient for our purpose

-
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gince the number of particles, the momentum, and the kinetic energy are
conserved in collisions, we have as a direct consequence

. 9fa, )

ﬁh L(M§?”)coll = n=0,1,2 only (1'17)
Mass . n = 0: Applying (1.15) to (1.16) with n = 0 and with defini-
tions (I.8) and (1.10) there results immediately the continuity equation.

(o3
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(1.18)
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where it has been assumed that —— f vanishes sufficiently rapidly at
infinity in velocity space. Equation (1.18) 1is the expression for the
conservation of mass as can be seen by integrating over an arbitrary

volume element

,

)

3p 65 3 aM ggpv.;dzx (1.19)
ot %
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where s is the surface of the volume. The integrand is the mass flux
per unit area. Thus, the rate of change of mass in the volume dM/dt is

the net rate at which it is entering or leaving the volume.



The continuity equation is often written in terms of the convective
derivative (also known as the total derivative and the substantial

derivative) defined by

n (1.20)

Tt represents the time rate of change in a frame of reference moving

with the fluid. Then (I.19) becomes

(1.21)
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For future reference we note that (1.21) is sometimes used as an equa-
r replacing V-V by an expression involving only 0, namely

tion fo

1 dp dn n d 1 da 1

— =2 e — = .—.—-2/ S — DAty foas 1-22\'
n 4t dt dt n(p) Y (o) ( 4
Momentum n = 1: After several steps of fairly straightforward
algebra, the first moment of the Boltzmann equation can be cast in the
form of a momentum equation also known as an Euler Equation which
written in component notation becomes

o i o il e
‘ o el g B (J X B) o+ DB (1.23)
c i i i

hich the second term is the divergence of the pressure tensor de-
fined by eq. (I.12).

The right hand side of the Euler equation enumerates the various
forces that can accelerate an element of plasma, namely imbalances in
the pressure forces acting on its surface, the electrostatic force, the
ponderomotive force and the gravitational force. In the absence of
interactions with neutral particles, there are no other forces. The
viscous force is contained in the divergence of the pressure tensor.

Viscosity arises when a fluid is in non-uniform motiomn. Momentum
of relative motion is exchanged between adjacent fluid elements through
the cross migration of the individual constituent particles in the
course of their thermal wandering. The viscous force therefore must de-
pend explicitly on velocity gradients and on parameters that character-
ize the degree of cross migration. The part of the pressure tensor that
contains the effect of viscosity is called the viscous stress tensor. In
the highly collisional domain the viscous stress tensor has the form

oV, A i
§ =-mn (— + z=— -3 V'V -c V. ( ’
13 T % 3 0 o T o G



where m and ¢ are the coefficients of viscosity, both of which are
positive numbers.

In the collisional domain for which (1.24) is an appropriate re-
presentation of 841, the thermal motions of the particles are isotropic
and the non-viscosity, purely pressure part of the pressure tensor is
also isotropic. The entire pressure then has the form
where p is the scalar pressure. The force that results from taking the
divergence of (1.25) can be written as explicit pressure-force and vis-
cous—force terms to the right hand cide of the Euler equation. These
are

0>

- Q:V,, & ) Lo 1 b
7.p = Vp + WV + (G +3 n V(V-V) (1.26)
2

where 1, and ¢ nave heen treated as constants, as 1s normally done for
mathematical convenience, although they are functions of pressure and
remperature. In ordinary fluid dynamics the terms in (I1.26) alone con~

stitute the right hand side of the Euler equation,in which form it is
known as the Navier-Stokes equation.

e e e

~

a large number of solar system applications, the plasma must be
treated as basically collisionless. Then the magnetic field greatly in-
hibits cross migration in the direction perpendicular to itself, but not
in the parallel direction. The viscous stress tensor then has an in-

fiuence mainly on velocity gradients parallel to the field. (See Rossi

and Olbert, 1970, for a discussion of the general yviscous stress tensoxr

in a magnetized plasma)u As a general observation, viscosity has not

vet playec a major role in discussions of solar system plasmas, although

statement in solar wind theory

rhere are occasional exceptions to this
and in the theory of the solar wind coupling to planetary magnetospheres
and ionospheres. The viscous stress tensor and viscous forces therefore
will be omitted in the remainder of the chapter.

When collisions are gufficiently rare that charged particles gyrate
around the magnetic field many times before colliding, the pressure
tensor tends to become anisotropic. With reference to & jocal cartesian
coordinate system which has its z-axis parallel to the field, the gyro~
motion acts to 1sotropy the pressure in the xy-plane. The component
that relates to the s—axis is decoupled to 2 degree that depends on the
actual extent of collisions. Two scallars are therefore necessary to
represent the two partially or completely decoupled motions. The pres—
sure tensor then has the form
(1.27)

P = =
iy = (o = P2 Byby * Pa by

or in vector notation
<= >

» = (py-py) Db+l (1.28)



where b is a unit vector parallel to the magnetic field, g; andéf is

the unit, diagonal temsor. To verify that (I.27) and (1.28) express

the properties attributed to the pressure tensor in this case, scalar
mulgiply (1.28) with unit vectors that are perpendicular and parallel
+0 B. Thus, if we once again let b = z,

~ 4 ~ A Licy ~
et S et 1 (1.29)
ntd A
k2 - —— Yy
£ e Z = Py (I‘ SO\'

ations (I.29) and (I.30) define the scalars p, and py.
The second moment of the Boltzmann equatiomn leads after

intermediate but straightforward steps to an expression relating

9.

energy densities in the plasma
3 1 2 . 3 1 2
S (2 ovT 4+ u) T =V u) VB Y ok =
2 . 3%, LG ] jk&k qu'

J. E, + oV, (T 11
4y 385 :

(1.23), and (I.31) shows that they

p, material momentum density,
35 pV2 + u, that is, they are
of these quantities.

inspection of equations (1.18),
are prognostic equations for mass density,
oV, and the total kinetic energy density,
equations that specify the time rates of change
Since we know that mass momentum and energy are subject to conservation
zws, it should be possible to recast these expressions into the general
conservation form given by equation (1.1). To achieve the desired re-
srructuring we need the field equations for the electromagnetic and

gravitational fields.

8 The Field Equations

ioe

The electric, magnetic and gravitational fields are related to the
quantities defined in I.0 by Maxwell's equations and

macroscopic

ﬂ . e
Newton s eguabions.

v E gﬁ/ro (1.32)
i
vV .B =20 (1.33)
o '-—>
oo pa oDl (1.34)
. V} —)‘/
> E
VxB = J 4+ u € 15
% Bam: iz Tt Ui G0t (1.35)
and
&
Veg==-4mGD (1.36)
(1.37)



£ 8.854}(10'12 Farad/m, Noss 4ﬂx10"7 Henry/m

/
l’eouo = cz, ¢ = 2.998x108 m/sec.

11

G = 6.670 x 107 m3/kg—sec.

The fields exert stresses and possess momentum and energy. The

stresses are given by the Maxwell stress temnsor
€

1
T.. T e EE, +-— BB, - C~—9 E2 + o Bz) S, . (1.38)
ij o i ] U, i] 2 2y ij
and the g;aviﬁgtional stress tensor
) 1 102 X
L., =-7= (88, -3 i .39
i LG (glgj 2 g 613) ( )

The divergences of the stress tensors can be seen to correspond to the
body forces on the plasma that appear in equation (1.23)

e T%i 3 Si - -
= € E, + 1.40
3 Xj €Ho ot TPy (J = B)i ( )
3 Fij
= T.41
3 X, P 8y ( )
J
where
> g0 g
s = BX (1.42)
5

is the ?oxnting vector.

2 2,
The energy densities of the fields are given by € E°/2, B /zpo,
and p¢ where ¢ is the gravitational potential defined by

e =-70¢ (1.43)

The flux of energy in the electromagnetic field is the Poynting vector,
as can be identified from Poznting's theorem

> >
e - >
Giyisay el [B?(VXE)—E'(VxE)]

= |

X

Ho o

which becomes upon substitutions from Maxwell's equations
€
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The term on the right hand side of this expression, - E - J, is the
electromechanical energy conversion term. It represents a source or a
sink of electro-magnetic energy, depending on the sign of E - J.

The flux of gravitational energy can be constructed in the usual
way by multiplying the gravitational energy density, o¢, by the velocity,
7. The choice is verified by taking the divergence of the trial expres-
sion and showing that it satisfies the appropriate conservation equation

- —> ”\/p -> >
T s {p V) ==~ wF=—-0V:
U ¢ 7% { 8
or
) e ncing 56
(p ¢) +7 - (ppV) = - pVeg + P 5~ (I.45)
>
On rhe right hand side the combination - 0 V-g is recognizable as
~he gravgtaagonalwmechanical energy conyersion term. The second term,
whil in practice is absent since the gravitational

ile formally present,
- agsumed to be constant.

T.9 The Conservation Equations

The continuity equation (I.18) is already in the form of a conser-—
vation aquation for mass. It remains to find similar expressions for
momenicen and energy. Combination of equations (I.23) (1.40) and (I.41)
produces the desired result for momentum

oV b eie ) et R =0 (1.46)
: X ij

- T, (1.47)

is the grand momentum stress tensor. It contains the pressure, Maxwell
and gravitational stress tensor, which have already been introduced, and
a new term, 0V;V: which is called the Reynold's stress tensor., It is
the macroscopic analog of the viscous stress tensor (which at this

level of exposition is still latent in the pressure stress tensor). It
represents momentum in the i-direction, pV4, that transferred by the
velocity component, Vj, across a plane which has its normal in the j-
direction, In turbulence theory, the analog between the transport of
momentum by random eddys on the macroscale and by the random motions of
molecules on the microscale is particularly appropriate, and it is where
the Reynolds stress tensor as an explicit concept was developed.

iy
Equation (I.46) shows_that the combination €,UgS = S/czis the

electromagnetic momentum density. In virtually all solar system
g y iR
applications §/c2 is completely negligible compared to pV, and it can




11

be ignored in the conservation equation with impunity. The validity
of this statement will be demonstrated in Section IT.Z2.

The expression for energy conservation results from combining equa-
tions (I.31), (1.44) and (1.45).

€

9 L 22
2?’ QZ pV™ + u + *%* E2 + %L Bz + p¢) +
L@ &% - }l
0
S . - N > Yo
v . [(ZeV +u+ P) - V4 q+ S8+ oVd] = p %%~ (1.48)

lie recognize the terms acted on by the time derivative tO be the
forms of energy densities. The expression shows our list of
ities to bhe complete. The terms acted on by the divergence
cpresent processes by which energy can enter and leave @&
rhrough its surface. Tt is clear that & sz +u+ o 9 v 1is
. of the total kinetic energy density (3 pove + u) plus the o
gh the surface, The combination P * V

vitational energy density throu
is the work done on the volume by the pressure stress as a result of the
7 across the surface, In the case of a scalar pressure, the
combination u + p which enters the conservation equation as an effective
convected energy density is referred to as the enthalpy of the flow.

rye heat flux vector, J; is seen to have the character expected of
sely the flow of energy across & surface, or more precisely, it is
y flux density. Note that we may have thg_transfer of kinetic
in the absence of convection if g+ 0 and v = 0. The transfer in
.e results completely from directional asymmetries in the single
icle distribution function, that is, the heat flux represents a
transport process. The macroscopic medium itself is mot
energy is flowing in or through it.

The flow of olectromagnetic energy is represented solely by the
Poynting vector, as claimed earlier. In contrast to the electromagnetic
momentum flux density, the electromagnetic energy flux density 1is often
comparable to or greater than the largest of the other terms in the equa-
rion. It must be retained in solar systems applications of MHD.

jiscussion of conservation equations, we derive

Charge To complete the ¢
r this we define a new

the equation for the conservation of charge. Fo
operator

e
, e 3
g [eilzs —=p fidw vl ol (1.49)

Comparison with equation (1.15) shows that we can distinguish between
the two operators by calling the first the "mass-velocity moment opera-
tor' and the second the "charge-velocity moment operator.' For the
seroth charge-moment of the Boltzmann equation we find
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CHV.T=0 (1.50)

)

The collision term has again been set equal to zero since charge is
conserved in collisions. This result is consistent with Maxwell's
equations from which it can also be derived. The divergence of (I.35)

gives

>
V-E

which with (I.32) is seen to be the same as (I.50).

The first charge-moment of the Boltzmann equation will be discussed
in Section II.1

[.i0 Inclusion of Neutral Particle Interactions

Tonization of neutrals, charge exchange between ions and neutrals
and the production of neutrals from ions by recombination are important
processes in solar system plasma. Examples of interacting bodies of
plasmas and neutrals include the solar wind and the interstellar medium,
the solar wind and comets, the solar wind and planetary atmospheres, the
ionized and neutral components of satellite torii in the magnetospheres
of Jupiter and Saturn, and planetary ionospheres and the neutral atmos-
spheres in which they occur, The effects of neutrals can be included in
the MHD equations as source and loss terms on the right hand sides of
the conservation equations just derived.

Designate the source and loss terms corresponding to the equations
for the conservation of mass momentum and energy by QM’ QP’ and QE

respectively. Svmbolically QM can be written as
(mll) "k
Q R —..__-k . e
M ; (~ T
™ k \1)1{ Lr
- [(m ), - @), ] n G
k59“ (Tex)kl

in which n. is the number density of the k-th species of neutral particle
which gives rise to an ion of mass (M )  in a characteristic ionization
time (t.) . 1In general ionization can result from photoionization, with

time scale pr, and electron impact ionization with time scale Tag* Thus

1 1 e (1.52)

The second term in (I.51) represents loss by recombination, with
time scale T, The time scale itself depends on the plasma density »



}__l
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since the number of electron encounters per second a given ion experi-
ences increases with the density of the plasma. The third term gives
the contribution to the spontaneous increase or decrease in mass den-
sity by charge exchange between neutral species k and ionized species L.
Since in a charge exchange interaction, the plasma gains the mass of
the former neutral and losses the mass of the former ion, the net gain
is the difference in the two masses, which can be negative. If an ion
species charge exchanges with its own neutral species, there is no net
change in mass density. In this expression the time scale (Tex)kz

15 referenced to the neutral species and therefore implicitly
contains the density of the ion species.

Corresponding expressions can now readily be written for Qp and Qp-
lhe composite momentum of the newly created ions adds to Qp and the
composite momentum of the newly lost ions subtracts from it. gimilarly
the energy of the new ions adds to Qg and the energy of the lost ions
cubtracts from it It is important in this case also to include the
ererzies of the electrons that are either gained or 1ost in the process.
1n connection with Qg it should be noted that at least one plasma in the
soilar system, the To torus, exhibits a substantial loss of energy by
eiectromagnetic radiation which must be included in Qg.

1

he purpose of this section 1is to indicate the existence of an
important class of phenomena in solar system plasmas involving inter-
actions with neutrals. To treat these situations the equations of
ideal MHD need to be modified in the way outlined here.

1.1l The Prognostic Equation for Scalar Pressure

The equations for mass, momentum, and energy can be combined to
uce a simple prognostic equation for pressure. We will treat the
.f a scalar pressure first. Then there is one such equation.

S
= J

ca
later we retain the tensor character of pressure that is appropriate
to a magnetized plasma. Two equations are then required. The pressure

equation can replace one of the original three, and it is usual to ex-
change it for the most complex of these, the energy equation.

1n the case of scalar pressure (1.25 without Sij) the internal
energy (I.13) is given by

(1.53)

The scalar product of the Fuler equation (1.23 with scalar pres=
sure) with V can be manipulated into the following form with the use
of the continuity equation (1.18)

2

-
ov? 7V + Vp = 0, T3+ V.G + pveg (159

i Y] 1
— —— Q + —_—
dat (2 DY) 2

Wwith the substitution (1.53), the energy equation (1.31) can be
manipulated into a similar form
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dt Plit b ¥
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-5

- - > -
= -V.q+ JE+ pV.g (I1.55)

>
Subtracting (I.54) from (1.55), and eliminating V'V by use of
(1,22), we find after some rearranging of the right hand side

3 2 5 o - - > > -> - =
L @p -3t do _ _y.q+ (Fp V) (E+V x B) (1.56)

) -5 > - X

d D . _ ~Ve.q+ j-E I.57)

Lol y s s 57

dt !W/J) 3 .5/3 ( :
o
> k.

in which the symbols j and E  are defined by
> e -
=23 ~-0 v (1.58)
c
o > “r -
E"=E+VXxXB (L.59)

Before describing the interpretation and use of the primary result,
equation (1.57), we digress briefly to note the meaning of these neg}y
defined current and electric field variables. The current density j is
the current that arises from the relative motion of positive and nega-
tive charges in equal numbers, and can be referred to as the conduction
current density. The conduction curreng_density is to be distinguished
from the convection current density, pCV, which is simply the transport
with the fluid of any excess positive or negative charge in the plasma.
The total current density, j} is then the sum of the conduction and con-

vection current densities.

we know that in the non-relativistic
1imit and in the presence of a magnetic field, B, the electric field, E
ipn a frame of reference moving with velocity 7 relative to a frame in
which the electric field is F is given precisely by equation (I.59).
Thus, E* is the electric field that exists in the frame of reference

moving with the plasma.

From =lectromagnetic theory,

Equation (I.57) is most meaningfully interpreted in the context of
thermodynamics where it is seen that the time derivatiye is operating
on a term that is related to the specific entropy of the gas. The
right hand side then displays the sources and sinks of specific entropy.
In order to convert to a description in these terms, we need first to

discuss one of the most fundamental quantities of thermodynamics, tem-

perature.
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1.12 Temperature and Related Concepts

Temperature is not a necessary variable for our description of
the macroscopic behavior of a gas. This is because temperature is
uniquely related to pressure and density, which we have already in-
cluded. However, it is often convenient to use temperature in place
of pressure or density and also to eXpress results or concepts in the
language of thermal physics. Since our approach has been to progress
from the microscale to the macroscale, we introduce temperature from
the point of view of the kinetic theory of gases, where it is a measure
of the total internal energy of a gas.

(1.60)

nkT

TR

u
total

Here n 1s the number density of gas particles, f denotes the number of
f freedom of motion that the gas particles poSSesS and k is
s constant (k = 1.38 x 10-23 jJoule/deg Kelvin).

£ + f
translational f otational 2 fvibrational (1.61)

The number of translational degrees of freedom can be either 1, 2
or 3 depending on whether the thermal motion of the gas particles is
constrained to one-dimension, two dimensions, or is unconstrained.
of motion constrained to one-dimension are beads on a wire,
and, more relevant to us, a gas of charged particles constrained to
move parallel to a magnetic field. Similarly a gagmaf\charged parti-
cles constrained to move perpendicular to a magneﬂggalJis an example

Examples

of a case for which £ . = 2.
translational

The number of rotational degrees of freedom can be three for a gas
of non-colinear molecules. A non-colinear molecule must contain three
or more atoms. Of course, if the rotation is constrained to one OT two
axes., the number of degrees of rotational freedom is correspondingly
reduced. Diatomic molecules have at most two degrees of rotational
freedom, since the moment of inertia about the common axis ig too small
to allow it to carry rotational energy. A monatomic gas, such as are
virtually all space plasmas, has zero rotational degrees of freedom.

Diatomic and polyatomic molecules can have vibrational degrees of
freedom There are two degrees for every vibrational mode, because an
oscillator possesses both kinetic and potential energy. Vibrational
modes are usually excited at temperatures well above room temperature.
For example, the effective number of vibrational degrees of freedom of

air in the atmosphere is zero.

y equation (I.13)results purely from
er kinds of motions

tion (I.51) for

The internal energy defined b
translational motion, but for space plasmas the oth
do not apply. To be strictly correct, however, equa
scalar pressures should be written



16

3
utranslational ) P

Comparison with (I.60) with f = 3 shows that
p=nkT (1.62)
This is one of the most important relations of the kinetic theory

of gases. To.convert it fully to our macroscopic variables defined in
T 6, we need only use the mean molecular weight of the gas molecules,

g . (1.63)

Tn a two-component electron-ion plasma, (I1.63) becomes (subscripts de-
note ion and electron quantities)

m.n, + mn, g m,
4 — 1
M om e = 1.64
y n, +n 2 ( )
i e
s 1 > o I 3 ,\1 3 .
in which we have utilized m, >>m and n, = n,- Equation (I.62) is
then + € +
k i .
p=(—)pT (1.65)
m
This may also be written in the usual form given in thermodynamics
*
P“” = RT (1.66)

. L * _ 1 S
Here R © k/m 1is the gas constant and v = /p is the specific volume,

that is the volume occupied by a kilogram of gas. It is usual in
thermodynamics to express densities in units of per-unit-mass rather
than per-unit-volume and to designate such quantities as "specific"
densities. We will indicate specific densities by a superscript aster-
isk. Thus the specific internal energy density, u iotal is from
(1.60) and the definition for R

%
utotal ) RT (1.67)

h

Equation (I.67) completes the set of relations between the thermo-
dynamic and macroscopic variables that is needed in the following. We
turn now to the subject of the heat capacity of the gas, by which is
meant the amount of heat that must be added to raise the temperature
by one degree. Two thermodynamic variables must be specified to deter-
mine the state of a gas, i.e., either p and v, p and T or v* and T,
since equation (I.66) gives the third variable once two are known.
Clearly in connection with determining heat capacity, T should be one
of the chosen variables., There are then two specific heat capacities,
¢ and cp corresponding to whether v* or p, respectively, is chosen as
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the second variable. In determining the amount of heat required to
change the temperature by one degree, the second variable is held fixed.

Thus

= 9Q

<, ( AT ) & (1.68)

and
[\er
c = —)
D ( T ° (I.69)
p

where the specific heat density Q* is related to the other macro-
scopic variables by the first law of thermodynamics

du. Q" . (1.70)

d u = ( - i ° /

total { padv

-quation says that the internal energy of a fixed amount of gas can
e changed by the addition or subtraction of heat to that gas or by
done on or by the gas. To convert (I.70) into a form that can be
ed when p is chosen as the second variable, substitute for pdv* from
the differential form of equation (I1.66)

* o * * =
du_ .., =dQ + v dp - RAT (1.7

Then (1.67), (I.68), and (I.70) taken together yield

£ R (1.72)

=
e.. = =
\Y L

and eimilariy (I.67), (I.69), and (I.71) yield
= =-R-+R=c_ +R (1.73)

The ratio of specific heats, cp/cv, is a quantity that appears so
frequentiy it is given its own symbol

«,; = “{J/CV (1.74)
From (1.72) and (I.73), it is readily seen that
. 2
v = + £ (I1.75
v Z 145 )
The following is a list of examples of values of Y.
f Y Example
1 3 motion constrained " to B
2 2 motion constrained < to B
3 5 isotropic space plasma
3
5 7 air (Earth)
5
- 1 many modes of thermal motion




The last thermodynamic quantity with which we desire to make con-
tact is the specific entropy, defined by

dor = adds (1.76)

It proves to be most profitable to express (I.76) in terms of the
& : " = N . .
variables p and v . For this first convert to the variable T and v

through (I.67) and (I.70), with (I.72) and (I.66)

*
ds = _4r + R dvg‘ (1.77)
iV ’T ~

v

al

. g dat . : . i i
Then aliminate %-w1th the logarithmic differential form of (I1.66)

% ™
? T

dp i 1T
dp , dv__ _dT (1.78)
P o

which when substituted into (I.77) and combined with (I.73) yields
*

* d dv
de = ¢ i o (1.79)
7
v P S
This can be rewritten as
ds =c¢ d n R (1.80)
v Y

%
where we have used the definitions of v and Y.

T.13 Return to the Prognostic Equation for Scalar Pressure

LA |

As promised in I.1l, we will now interpret equation (1.57) as a
statement regarding the behavior of specific entropy. Since for our

gas v = 5/3, the combination p/dY can be eliminated between (I.57) and
{1.80) resulting in

d * K 7 > -

...'.Ei == — - ! q aa j : E

dt - > (1.81)

where we have used (I.72) and the definition of R. Equation (I.81)
makes it clear that (I.57) is a prognostic equation for specific en-
tropy. If V- = 0 and 33” = 0, s* is a constant of the motion. Such
4 situation is referred to as an adiabatic flow, or constant entropy

flow. The specific entropy will change as one moves with the flow only

Tf there is a non-zero divergence of the heat flux or if there is Joule

dissipation in the frame of reference proving g;gp the plasma, i.e, if
7. ©~ # 0. Note that ggf can be zero even if J+E # 0.
dt
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1.14 Adiabatic, Isentropic and Polytropic Flows

*
In an adiabatic flow & /dt = 0, and from equation (1.80), this
implies

b =ap (1.82)
where o is a constant of the motion. Note that it is not necessary for
two different fluid parcels or fluid elements to have the same value of
%, but it is necessary for any given fluid parcel to retain the same
value of o as the parcel moves with the flow. To appreciate the spe-
~ial status of o, consider (1.82) to be its defining equation. Then
(1.80) shows that o is a function of only the gpecific entropy. Con—
sequently, for an adiabatic flow /4t = 0. Consider the case of a
steady state, adiabatic flow. The equation for o becomes

770 = 0 (1.83)

"his .s the equation for a streamline constant. Thus o may vary from
one streamline to the next, but it has the same value on any given

1 This means that if o is specified on a two-dimensional
surface through which all of the streamlines pass, it is specified
througzhout the flow.

1f it is true that o is the same for all of the fluid elements
comprising the fluid, then the flow is said to be isentropic. In this
case ¢ is a constant in space and time. An isentropic flow is fully
determined by the continuity equation (1.18), the momentum equation
223} and the isentropic relation (1.82). An adiabatic flow is also

T+
Lell)]
1

escribed by these equations, but an additional prescription must be

[N

19)

ven to specify o

0

The enormous simplification that results when the energy equation
(1.31) is replaced by (i.82) has lead to the generalization of (1.82)
in the form
5= aph (1.84)
in which o and n are specified constants. The exponent, n, is called

the polytropic index.

The polytropic assumption is an artifice to render the fluid equa-
tions more tractable. The value of n is chosen to produce the best si-
mulation of the thermal condition of the gas possible within the poly-
tropic assumption. For example, if the heat conductivity is very high,
heat conduction will keep the gas at a nearly uniform temperature, even
though that common temperature may change in time. One can see€ by
comparing equations (1.65) and (I.84) that in order for T to remain
uniform while p and p are allowed to vary in space, we€ must have n = 1.
The following is a list of commonly used values of n
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n simulation

0 isobaric - constant pressure

1 isothermal - constant temperature -
high heat conduction

Y isentropic

0 isometric - constant density

There is a more basic way of formulating the simulation that the
The polytropic equation (I.84) is

3 "= 0) in which the heat flux is
u?} that is

polytropic assumption performs.
exact for steady state problems (i.e.
proportional to the convected flux of 9t internal energy,

> >
g = KuV (1.85)

. Fa i
where ¥ 1s a constant, and j+.E° = 0. Then n and K are related by

n= G+ /(L +K) (1.86)

=
Note that if Kk = 0, i.e. q = 0, Yy = 5/3 and if K > ©, ¥ * 1. Thus the
adiabatic and isothermal limits are recovered properly.
T.15 The Bernoulli Equation
of solutions to the momentum equation (I.23) exists

Rewrite the equation for
We

A special class
. the case of steady state, polytropic flows.
je case of a scalar pressure and ignore the electrostatic term.

have retained this term for completeness but it is virtually always neg-
ligible compared to the other terms, because a plasma tends to maintain
itself electrically neutral to a high degree of precision, (8§11.2) . Then
T R
N LTV + —2= X Y 1.87
v @ )V 5 o ¢ ( )

The gravitational force has been replaced by -V¢ and the convective
derivative of the velocity has been written out in terms of separate
intrinsic and convective terms. With the polytropic relation (1.86),

we may write

% (1.88)

: O
i
<J
=y

where h

LSt i
- ) (1.89)

It is readily verified by the definitions and relations given in T.12
that h” is the specific enthalpy, that is, (utp)/p where u is defined
as if thg polytropic index n were the actual ratio of specific heats.
Expand (V-V/V) by use of the vector identity
2
> > -+ -
(R-ME =95 - X x (V=)

(1.90)
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>
where A is an arbitrary vector, The scalar product between (I.87) and
the velocity vector V then becomes

2

S * 7 (BxV)
V7 (- +h o+ 9) = T (BEV) (1.91)

Y

5> > > > > >
where the vector identity (JxB)'V = J-(BxV) has been used on the right

hand side.

In non-magnetized flows (e.g. in ordinary fluid dynamics) and in
flows for which BxV = 0 everywhere, the right hand side of (1.91) is
identically zero. That MHD situations exist for which BI‘V everywhere
111 be demonstrated in the next section. With the right hand side of
(7.91) set egual to zero the equation expresses the constancy of the

ancity VZ/Z + h* + ¢ along streamlines of the flow. Thus we arrive
‘he result referred to as the Bernoulli equation

y B
S+ h +¢=W (1.92)

W is a streamline constant.
1.16 Divergence of the Anisotropic Pressure Tensor

in situations where it is desired to retain in the Euler equation
e anisotropic form of the pressure tensor as given by (I.27), it is
1 to reduce the divergence of the tensor to vector operations on
. and vectors. TFor this write the pressure tensor in component

BB
PR S0y 1 q
BZ + p, 6ij (1.93)

The divergence of Pij is a vector the i-th compeonent of which is

3 op, 3 BiB'
= (P - p:) + B + (pu=py) 5;5(—;510 (1.94)

8Pi* oDy, 5 BiB'
; J = g 1.95
B, 5x Bj o (py = Ps) B, — 5 ) ( )
3 3 B
Tt is readily verified that
) B.B .
S 2 e (1.96)
B N~ ( ) - B ~
ox 2 i 2 ox
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and hence
%

) dpy, B, 9B,

i3 _ i i
Bi E)x‘i Bi 9% B (p"_pl) . o ] (1.97)

Tn vector notation, this is

(\"/ji?)” = VyPu - (p"_pl) [(B.Z)B] o
B

. 1 .’*
in which the " signs on the vectors denote the component parallel to B.

To degermine the components of (1,94) in the plane perpendicular

=
to B, Let A be any vector in that plane., Then
abi’ apl 3 BiB,
Ai Sx: w Ai ox . g (p"—pl) Ai Tox, ( 2 ) (1.99)
j i N

Equation (1.96) holds also when the initial B, on each side is replaced
by A.. Thus (I.99) becomes *

31?—{:]. Spl B, BBi
A‘L _:'\;‘\T = Ai [aX, + (Pn‘P_'_) 2 BX_ ] (I.lOO)
j i B i
or in vector notation
E.-NE
(TZ“P/}_L = v)_ p_!_ + (Pn"P_L) [—_';E——] L (I‘lOl)

where the  signs on the vectors denote the componenent perpendicular to B.
1.17 Single Particle Drifts and the Euler Equation

Tt is usual to begin a courseé on plasma physics with a derivation
of the motion that a point particle of mass m and charge g executes in
certain simple electric and magnetic field configurations. The force
governing the motion is the Lorentz force
> -+ -> >
Fp = 9 E+qvx3B (1.102)

»]

The second term on the right hand side, the magnetic Lorentz force,
always acts perpendicular to the velocity vector. In the absence of an
electric field and in a uniform magnetic field, this force causes the
particle to move in a circular loop in a plane perpendicular to the mag-

netic field. The radius Iy of the circle (the gyroradius, rg) and the
angular frequency at which the particle goes around the loop (the gyro-—
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>

frequency, wg) can be be found by balancing the centgifugal force of
the motion against the magnetic Lorentz force., Let v, be the component
of the velocity in the plane perpendicular to B (the gyrovelocity).
Then the balance of forces is

> - - >
me, X vy = qvy ¥ B (1.103)

[~

from which we see that

=P 1t‘
W= - At (1.104)

g m

and from v, = r 4 , W€ find
- g 8

mv,
r =  —— .105
s B (1.105)

4 charged particle .in ciroular motion generates a magnetic ‘
¢ipole, the magnetic moment of which is the product of the current that

+he rirculating charge produces and the area of the circle
-
> 2 wL %mvvz E %
o= (T Y — ) = - - — -
= (o ) (g 5757 = 5 u b (1.106)
where

1
—— (1.107)

is the magnitude of the dipole moment.

After the treatment of the motion of a particle in a uniform magnetic
field, cne considers the case of motion in a non-uniform magnetic field
and in the presence of an electric field. One of the first non-trivial
results of plasma physics is the demonstration that if the spatial and
temporal scales of the gyromotion that a particle would execute around
the local magnetic field are much less than those of the magnetic and
clectric fields themselves, U is a constant of the motion. In this con-
text 1 is sometimes called the first adiabatic invariant,

The constancy of 1 can be thought of as an example of Lenz's law

of electromagnetism, which states that electrical circuits change their
currents to counteract externally caused changes in linked magnetic
fluxes. In our case, U is directly proportional to the magnetic flux

¢, linked by the gyrocircle, Explicitly
2
Po=o— O (1.108)
27m g .

The constancy of 1 is a result of the constancy of Qg. Let EMF be the

electromotive force per unit charge around the gyrocircle induced by
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>
either an intrinsic change in B or by a movement of the gyrocircle
through a spatially varying magnetic field. Then the particle changes

its energy at the rate

w
d 1 2 g (1.109)
——— —_— = MR
7 G W, ) q EMI T
But
EMF = 7r 2 dB (1.110)

(1.113)

The fact that the gyromotion produces a magnetic dipole allows the
magnetic Lorentz force acting on the gyro-component of velocity to be
replaced by the magnetic force acting on a magnetic dipole. The mag-
netic force on a field aligned dipole is given in general by

F = -u VB (1.112)
|94

The minus sign occurs because a is antiparallel to g-for gyrating
charged particles. The original problem of determining the motion of a
charged particle with velocity components 3' perpendicular to B and v,
parallel to B becomes replaced by the problem of determining the motion
f a current loop of mass m, charge q and magnetic moment }1 which has
and v, parallel to B.

velocity components VD perpendicular to
The motion of the current loop perpendicular to the field as given
by its drift velocity, V_, can be different for ions and electrons and,
therefore, can result in electrical currents, called drift currents.
The purpose of this section is to show that when all of the drift cur-

rents are combined, one recovers the Euler equation.

The drift velocity is obtained by considering the forces acting on
the charged loop in the plane perpendicular to B

> >
> - > > 2-.B B -
Fy, = qE; + ¢ (VDxB) - uVB-my, [(g—'V) E—]l + mg, (1.113)
dvp,
A

The fourth term on the right hand side is the centrifugal force that
results from the motion of the loop along a curved line of force. The
term in brackets is the curvature of the field line, The other terms
require no further explanation. Solve (1.113) for VD to find
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> e mnv,, - - -
P ExB L B "B B
’\/1 = + n— —— — — —_— . —
D 52 qB B~ VB R B B (G V3
- dvy=>r -
m B . D m > _ B

+ o8 B X 3% + B g X B (1.114)

The subseript i is now superfluous and has been dropped.

The first term on the right hand side of (I.114) is the electric
1d drift, the second term is the gradient drift, the third term is
he curvature drift, the fourth term is the inertial drift and the last
rerm is the gravity drift. The inertial drift is sometimes written in
in which form it is called the polarization
The replacement 1is possible because in drift motion calculations,
and E are assumed to be constant. Then by dif-
the second time

cuantities except V
f tisting (T.114) with respect to time and dropping
Jerivacive of V, we find

s

o KB
a-g—‘ = ——t—:- X ;‘S—E (I.ll))

way the inertial drift term becomes the expression for the

in this
solarization drift
-
- dv ' >
m B D m 2E
L R T (1.116)
qB B 2
q dt oB t

1f pow the drift velocities of the ions and electrons are combined
+o form an expression for the drift current

—>¢ — /G— e —+
i e[ni\ oM ne(VD)e] (1.117)
one finds by inspection of (1.114) (with 45 = e and Q5T e)
+ bl 3
; N 1
J = p —= + —5 X VB
D c BZ B2 B
> > > > 4V
p” -
=B B .oh8 pB__D
e e e T
B
p ->
L B .118
- B g X3} (1.118)

In this result the values of p, and p, have been constructed out of the
istent with their

single particle parameters in a manner that is consil
definitions in (1.12).
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e ¢ 2 1 2 C

Pr ™ 7 imi(vl )i t Eneme(vl )e ¢
- 2 2

Pu nimi(Vn- )1 + ﬂemi(\flv )e (1.120)

The factor % appears in (1.119) and not in (1.120) because
= Vi + vg embodies two components of motion.

wing in the plasma that has now been
arate ion and electron com-
be added, which arises when-
gnetic dipoles.

To obtain the total current flo
created out of the bringing togetheg of sep
ponents, the magnetization current Jy must
aver there is an inhomogeneous distribution of ma

-> - =¥ ->
7= = 3+ (1.121]
o leotal 5 + JM \I 121>

f% itly in terms of dipole moment distribution by

I, is given explic
L

wnerae

- o e ->
j. = Vx(nu, +nuU ) (1.122)
M ii e e
This reduces immediately to
) P1L g
TM = - X ’\—B—E (1.123)
il P, T P
= 2 %V L L .
“Eaw o o 2Ew - v (1.124)
B B B
The addition of (I.118) and (1.124) gives
. B 3 b
- Ix
= Bontulest TS 4o = e _—
J Pe 7+ x VP, BBx[(Bv)B]
B B
> 4V
N N
Bx VB  VxB, DB D, ,p>_B _
- p,( 3 2) reg X S TE & %3 (1.125)

Two further algebraic reductions are needed to reach the desired form.

These are the two vector identities

B B B (B-)EB (1.126)
i L. ok - 2 DV -
B X [<B )B] B X [ 2 ]
and
> > - > >
22+ = Sx Py (1.127)

B

od
o=]
=
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. . Y . . > = . .
(The validity of the second equatlon requires JiB, which is appropriate
to this discussion). The identities allow (1.125) to be rewritten as

5 vy e
bt . =%
T = 2y [p=— + Vp, *u-p) —73 - o E - pg ] (1.128)
2 dt B L 2 c
B B
>
av
Tuation (1.128) can now be inverted to solve for P —7— with the

understanding that the result applies in the plane perpendicular to B

av. >N

. - > >

0 “a% = -Vp, = (pu - P,) SE—%ZE + QCE + JxB + 0g (1.129)
. B

The final expression, equation (1.129),is seen to be identical with
rne perpendicular component of the Euler equation (I.23) in which Vo is
jcentified with V-and the form of the divergence of the pressure ten-
sor is given by (1.101). It should be noted that while the result
demonstrates that the microscopic and macroscopic descriptions are for-
mally identical, the use of particle drift theory is restricted to
situations in which the magnetic field is presumed known. 1In the MHD
description, the magnetic field is one of the dependent variables, and
~hus cituations can be treated in which the magnetic field is in part
or completely determined by the plasma.

7.18 Limitations to the Use of the Macroscopic Equations

Ae they now stand the macroscopic equations are not a closed set.
Te obtain a fully complete macroscopic description of a plasma, it is in
principle necessary to compute all of the moments of the Boltzmann equa-
tion. The truncation at n = 2 necessarily leaves more dependent varia-
hles than equations. There is no qugtion for the highest order depend-
ent variable, the heat flux vector, q. The problems that can be treated
either set q equal to zero (adiabatic flows), or use the artifice of a
polytropic index to simulate the effect of heat flux (polytropic flows) ,
or introduce an explicit equation for g, such as a thermal conduction
equation. More elaborate forms of equations for 3 are being evolved in

connection with the theory of the solar wind.

The components of the pressure tensor also are not completely deter-—
mined within the derived equations. It was noted that the specification
of the viscous-like components required results from kinetic theory to
obtain the coefficients of viscosity. The anisotropic form of the pure-
pressure terms depends on the validity of the approximation that the
pressure is isotropic in the plane perpendicular to the magnetic field.
When gradients in the plasma or the fields are comparable to the gyro-
radius of the ions, this is not a valid approximation.

There is an even more fundamental l1imitation to the equations at
the stage of the development we have now reached. Consider a steady
state (9/3t = 0) problem which has only the minimum number of dependent



28

variables to still qualify as an MHD problem, namelx-$, p, p and B.

The current density can be expressed in terms of B through the Maxwell
equation (1.35). There are a total of eight unknowns, 1if the vector
components are taken into account. However, the continuity equation,
the Fuler equation, the adiabatic relation and the remaining Maxwell
equation involving B (1.33) total only six, including the three vector
components of the Fuler equation.

The missing equations are supplied through the computation of the
first charge-moment of the Boltzmann equation (1.49 with n = 1). This
results in an equation called the generalized Ohm's law that relates
the electric field vector £ to the other dependent variables. Then the
Maxwell equation (1.34) provides three additional equations. (At the
same ©rime Maxwell equation (1.33) becomesﬁredundant because it follows
from (T.34) with the prescription that 7.B = 0 at some initial instant.)

The role that the generalized Ohm's law and its approximate form
-Lie hydromagnetic approximation play in MHD is sufficiently important to
be ccnsidered in a separate major section,

IL+ THE HYDROMAGNETIC APPROXIMATION AND ITS CONSEQUENCES
7.1 The Generalized Ohm's Law

The first charge moment of the Boltzmann equation (I.49) leads after
a fairly lengthy series of intermediate steps (e.g. Rossi and Olbert,

1970) to the following expression in which no approximations have been
nade other than replacing the collision integral by an effective colli-

sion time.

0J ;
e 0 e 0 )
s e e (P ) e G )t = W VRV —p VY )
t_ m d s o . . . ° . 0
o 0%y ij’a mbaxj ij’b ij i o e d]
- = e 1 1 - >, > -> - -
= olE + += (= - = = =
[ S e p V)] x B}, +pe8 (J-o M/, (11.1)

a b

in which subscripts a and b signify jons and electrons, respectively.
The ions are assumed to be singly charged and all to have the same mass,

m . The parameter & is defined by
2

= e 1 1
= e
3 e + e(m = )pC (1I.2)
ab a b

The quantity T that enters into (II.1) is the time scale for momentum ex-—
change by means Of collisions between the ion gas and electron gas that
together make up the plasma. The time scale for coulomb collisions 1s
given by spitzer (1956).



