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variables to still qualify as an MHD problem, namely-e, p, p and g.

The current density 3 can be expressed in terms of B through the Maxwell
equation (I.35). There are a total of eight unknowns, if the vector
components are taken into account. However, the continuity equation,
the Fuler equation, the adiabatic relation and the remaining Maxwell
equation involving B (1.33) total only six, including the three vector
components of the Euler equation.

The missing equations are supplied through the computation of the
first charge-moment of the Boltzmann equation (I.49 with n = 1). This
results in an equation called the generalized Ohm's law that relates
he electric field vector E to the other dependent variables. Then the
Maxwell equation (I.34) provides three additional equations. (At the
same ©ime Maxwell equation (I.33) becomes redundant because it follows
from (T.34) with the prescription that V-B = 0 at some initial instant.)

The role that the generalized Ohm's law and its approximate form
he hydromagnetic approximation play in MHD is sufficiently important to

il

be considered in a separate major section,

17. THE HYDROMAGNETIC APPROXIMATION AND ITS CONSEQUENCES
T7.1 The Generalized Ohm's Law

The first charge moment of the Boltzmann equation (I.49) leads after
a fairly lengthy series of intermediate steps (e.g. Rossi and Olbert,
1970) to the following expression in which no approximations have been
nmade other than replacing the collision integral by an effective colli-

sion time.
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in which subscripts a and b signify ions and electrons, respectively.
The ions are assumed to be singly charged and all to have the same mass,

m . The parameter o is defined by
2
g e 1
0 = — p + e(l— -=)p (11.2)
m_m m m’c
ab a b

The quantity T that enters into (11.1) is the time scale for momentum ex-—
change by means of collisions between the ion gas and electron gas that
together make up the plasma. The time scale for coulomb collisions is

given by Spitzer (1956).



To transform (II.1l) into a more useful express
highly accurate approximations, the first of which
second will be justified in Section IL.2.
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Thus (II.6) can be written in the more revealing form
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is the usual ohmic resistance term.
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comparing the magnitudes of all terms with that of some reference term.
Take the first member of the right hand side to be the reference term
and proceed to define dimensionless ratios with the remaining terms

2
7 v e
R,z B - B -V (11.9)
1 nJ m m
e e
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Tn these expressions, L and T represent characteristic length and time

scales of the flow.

As an example of a typical set of space parameters to evaluate the8
gizes of these ratios, take V = 107, ms™", L = 106m, n = lO7m”i, B = 19"
o= 10° ©K, and note that poez/me = 3x10‘1§e e/k 2107, ely = 2x10‘2%
+$ WKS units. Then Ry = 3x10%T>>1, Ry = 102>>1, Ry = 10°1, Ry = 3x10°>>1.

- >
pical space gituation, -VxB is

The example shows that in a ty
other terms on the right hand side,

comfortably larger than all of the
except possibley JxB/ne. That is, generally

SR =g

|E " |<<|VxB| (IL.13)
Thus in most space applicatioms, the generalized Ohm's law is replaced
by the hydromagnetic equation, also known as the hydromagnetic approxi-
mation or the hydromagnetic limit of the generalized Ohm's law.

(11.14)

That is, to a good approximation, the electric field may be regarded as
a purely motional field. It is important to be aware of the possibility
that other terms in (II.6) could dominate in restricted regions of space.
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The subject of magnetic merging, to which we return briefly later, is

an example where (I1.14) is assumed to be violated.

Even in normal space conditions there is a somewhat better approxi-
mation for E than that given by (II.14). As was seen in the numerical
example, the term which tends most seriously to invalidate (II.14) is
J If this term is retained, then the resulting expression for
¥ will be improved. In our numerical example, the remaining corrections

.

would be one percent or less. Thus a more accurate expression is

T x B/en.

-

> - J > i
r o= - (V- ~—) x B (11.15)
en

If we consider the plasma to be composed of an ion gas component

moving with velocity V, and an electron gas component moving with ve-
| then with the same two approximations given by (I1.3) and

locity Vg,

(11.4) we may write

> -3 -

NV = m_nv‘ (11.16)
1 b &

- -~ m

J = en(Vi—VQ) CII.3T)

where n is the common gumber%density of the two gases (cf. I11.4). With

these expressions for V and J, (II.15) becomes

(17.18)

Zquation (11.18) shows that in the more accurate version of the
n in which the Hall effect term is retained,

hydromagnetic approximatio
1 field of the electron gas component

the electric field is the motiona
of the plasma.

1I.2 Charge Neutrality gggﬂgg}ated Approximations

F4

electric field permits a verification
utrality that has already been in-
difference in the number densities

The expression (II.6) for the
of the basic condition of charge ne

voked several times. The relative
of ions and electrons can be parameterized by the dimensionless ratio

0o/en, where n is the common (average) number density gf the two charge
particles. The space charge density pc 1is related to E through the
Maxwell equation (1.32). As in the previous section, we perform+a&scale
analysis of this equation with the+foreknow1edge that the term -VxB
makes the biggest contribution to E.

S o (11.19)
en el Sl
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>y
Next make the replacements B/L = 4 J = U en]Vi Ve}, vV =V,, and
eop = 1/c2, Then (II.19) becomes .
o > >
P Vit‘fi—Ve‘
e ?\; —E'—”"—— (11.20)
c

Tn the non-relativistic plasmas that populate the solar system, charge

neutrality is seen to be strongly obeyed.

. -~
If instead of VB, we use the largest term in ET,

N e n
o represent E, the dimen51onless ratio of number densities becomes

0 V.-V )2
TC A 1 e) )
e . (11.21)
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# similar analysis can be dome for the electrostatic force in th
fuler equation (1.23) which was stated earlier to be negligible com-
pared to the ponderomotive force. This claim can be verified directly

by a scale analysis

e
g-E
e 11.22
v LIB ( )
. " . . 2 o
Make the substitutions E = VB, J = B/poL, e M, = ¢ to find
Nl (11.23)
r\: 2

This ratio is of the same order of smallness as the space charge density-
number density ratio. Scale analy51s shows the electrostatic energy
density, which enters into Poynting's theorem (I.44) and the equation

for the conservation of energy, is smaller than the magnetic energy

density by the same velocity ratio

EQ'EZ £ U VLBZ VZ
SonT et (I1.24)
BT /2u h B c
o
BE/A
Finally, the displacement current € U ot that appears in the
Maxwell equation (I,35) is also negllglbie compared to V x E.
...“y
€ My 3E/3t~ R thAVB/T
8o Iy A 11,25
B/L ( )
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With the substitutions Eouo.= l/cz and L/T = V, this becomes

™M
=
Qs
=0
~
[ g

(11.26)

1

DMI<

o
e
VxB

B8

11.3 Poynting's Theorem in the Hydromagnetic Limit

Tn this and subsequent sections the consequences that follow from
tha hydromagnetic approximation (I1.14) are developed. Poyating's theo-
rem (1.44) becomes especially simple under the hydromagnetic approxi-
mation and has an easily understood meaning where Equation (IL.19) is
used to repiace the electric field, and the electric energy density

terw is dropped in accordance with (I1.24). There results
a ,32 . N 32 > > > -
@Gy 4 VeV = VU xB) (11.27)
ot 21 1 - =
o "o

in whicn the Poynting vector appears as

(7 x8) x8 2 o ona
¢ = X ) = - 5 [V-6-1b]
H Y
O (¢
2
- ?r’ v, (11.28)
i

wheve ?, is the component of ? perpendicular to B. S has the appear—
ance of a flux of magnetic energy density, except that magnetic energy
density is BZ/ZUO. Poynting's vector, S, is properly interpreted as
the magnetic enthalpy flux density. +In+strict analogy with the me-
chanical enthalpy flux densit (utp)V, S contains both the energy flux
density of the field (B2/2u )V and the work required to move that
energy against the pressure B /ZUO.

The electromechanica& energy convergion term -£ * 3 becomes after
an intermediate step -V (J x B). Since vV, (J x B) =,0, where Vy =(b.V)Db
is the component of V parallel to B, the expression V-(J x B) can be
written as Vi'(J x B) without approximation. The+ter§ is sgen to be
the power resulting from applying the pondergmotive force (J x B)
against the flow velocity V,. Thus if (J x B) opposes the motion, the
flow is slowed and energy is transformed from mechanical form to mag-

netic form, and vice versa.

~

=y

TT.4 Equipotential Fieldlines and Streamlines in Steady State
Hydromagnetic Flows

An immediately deduced and far reaching property of steady state



hydromagnetic flows results from the Maxwell equation (I.34, also known
as Faraday's induction law). In steady state, (I.34) becomes

VxE=0 (11.29)

The electric field is therefore given by the gradient of an electrical
potential @F

- e " p

E = - Ve (11.30)

L=

=

the vector I is everywhere normal to surfaces of constant &
2quipotential surfaces). In the hydromagnetic &imit {(IT.14} both the
cor Vv and the magnetic field vector B are everywhere or-

o L, and therefore lie in equipotential surfaces. It follows
ines of the flow and magnetic field lines are confined to
ui ntial surfaces and are therefore equipotential lines., This re-
sult can be chtained formally by replacing E by -Vop in (I1.14) and _
multiplying the resulting relation first with V and then with B,

>C3darl

:-‘7»5\/(;;? = (II .31)
> ; N
B VG = ( (11.52)

convertad to steady state flows by an appropriate Galilean transforma-—

tion. For example it is sometimes useful in problems involving pro-
pagating plane waves or planar discontinuities to transform to the

frame of reference moving with the wave or the discontinuity to take
adventage of (I1.31) and (II.32). Solar system examples exist in

the form of structures in the solar wind that corotate with the sun

and possibly in the form of corotating structures in the magnetospheres
of Jupiter and Saturn., The structures would appear stationary in the

2sponding corotating frame of reference.

COTl

In the case of the sun a further simplification applies that il-
pecial but important class of steady flows. Assume con-
ts in the frame of reference corotating with the sun.

lustrates a
stancy prevai
This may be considered an idealization of a circumstance in which solar
surface conditions change slowly on a relevant solar wind flow time.
Then (LT.31) and (II.32) may be used as valid approximations to the
actual situation. In the photosphere the solar wind velocity is essen-
tially zero and the electrical resistivity is low. Thus in the photo-
sphere the main contributors to E in the generalized Ohm's law can be
taken to be negligibly small. This results in the characterization of
the photosphere as an equipotential surface in the corotating frame.
(It would not be so characterized in the inertial frame since the ro-
tatioral motion of the photospheric plasma+gives a

_0rotation X gphotosphere contribution to E in that frame.) Now in

the corotating reference frame all of space filled by the solar wind

iz linked to the photosphere by equipotential field (and flow) lines.




Tt follows that since the photosphere is an equipotential surface,

¢y = constant in the region of space filled by the solar wind. Equa-
tion (II.30) then gives E =0 everywhere in the solar wind in the co-
rotating reference frame. Eheehydromagnetic equation (IL.14) allows
the further deduction that V‘!B everywhere in the solar wind in the
corotating reference frame. It will be recalled from Section (I.15)
that this condition permits the construction of a Bernoulli integral
for the flow in the corotating reference frame.

The situation just described for the solar wind can be generalized
to a etatement about a special class of steady flows. If the flow
ctreamlines or the magnetic field lines comprising a continuous flow
or field domain pass through an equipotential surface anywhere within
the domain, the entire domain is an equipotential volume, the electric
fieid within it is zero and the streamlines and flowlines within it
coinaide.

A further useful relation between the magnitudes of the velociiy
nd magnetic field can be derived for these equipotential domain flows.
tpce it is usually necessary to make a Ga;ilean transformation from
the reference frame in which the velocity V is given and the reference
frame of the equipotential domain, let V* be the required transforma-
tion velocity. The flow vglogity in the reference frame of the equi-
gntantial domain is then (V-V*). 1In the solar wind problem in which
vV 1s giyen in the inertial reference frame, V' is the corotation ve-

pa
a
Q

D

o i

ity § x r, where () is the solar angular velocity vector and r is
e radius vecgor in_a heliocentric spherical polar coordinate system.
e condition B |[(V-V") can be expressed as

g e e
B o= ko (V=VT) (I1.33)
« is an as yet unknown scalar function of space and p is mass
ty. The reason for including p explicitly as part of the co-

J - Tk . B : 7 5
ient to (V-V¥) is to take advantage ol the continuity equation
(1.18), which in steady state is

v.[ Q<§m§*)_ = 0 (11.34)

The divergence of (1I1.33) is zero by Maxwell's equation (I.33). Thus
with (II.34) there results

o (V-V") .V = 0 (I1.35)

This is the equation of a streamline constant of the flow in the re-
ference frame of the_ e uipotential domain, that is, K is constant on
the streamlines of (V-V*). 1If k is constant across any surface linked
by all of the streamlines in the equipotential domain, then K is a
constant throughout the domain.
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IT.5 Freezing Laws

In 1942, Alfven showed that if a fluid moves such that its veloci-
ty is related to the electric and magnetic fields in accordance with
equation (II.14), then the Faraday induction law (eq. I.34) imposes
a constraint on the motion that can be described as a freezing of the
fluid to the magnetic field, or in Alfvén's words '"the matter of the
liquid is fastened to the lines of force" (Alfvén, 1942). TIf we sub-
stitute for the electric field from eq. (II.14) into (I.34), we
obtain .

B
2= (V x B) (11.36)

The freezing law, which follows simply as a kinematical consequence of
(IT.36), states that the magnetic flux through a closed loop that moves
with the fluid is constant in time. The demonstration of this result

proceeds as follows.

The magnetic flux through a closed loop, £, is defined by

gliPN

F =] Bf da

(IT1.37)

where da is an element of area on any surface which has £ as its peri-

meter. Causs' theorem and the divergence-free condition on B (eq. 1.33)
guarantee that the magnetic flux is the same through all surfaces shar-
ing a common perimeter. The freezing law can be expressed mathematical-

i1y by

o ) (11.38)

The symbol for the total time derivative is used to indicate that F is
to be evaluated in reference to a linked set of fluid elements that

move with the fluid. Equation (I.20) for the total derivative is not
appropriate, however, because F is not '‘a leocally defined quantity. We
must evaluate (II1.38) using the integral form of F, eq. (II.37) expli-

citly.

Refer to Figure (II.1) which shows a closed loop of fluid elements,

%, at two successive instants, t and t + At. An enclosed volume is
formed by the two surfaces S1 and Sp,that have 2(t) and 2(t + At) as
their perimeters, and the generalized cylinder, S3 generated by the
motion of 2. Let F be the magnetic flux enclosed by %2, and denote by
subscripts 1, 2 and 3 the fluxes through the surfaces, S1s Sy and Sj.
Then 1if the normal vectors to S1 and S; are chosen to lie on the same
side of each surface relative to the flow, as indicated,

T Fz(t + At) - Fl(t) (II.39)
dt At




Figure I1.1 Generalized cyclinder formed by the motion of closed
line "frozen" to the fluid.

where the limit At = 0 is understood. The divergence-free condition on
B rejuires a zero net flux through the three surfaces at any time.
In particular

-F (t + At) + F,(t + At) + F, =0 (I1.40)

»is equation it is recognized that the outward pointing normal to

1T this

S1 is needed to utilize Gauss' theorem, and hence, the change in the
sign oun T3 relative to Fp and F3.

Now eliminate Fp(t + At) between egs. (I1.39) and (II.40) and re-

place the fluxes by their integral forms, (I.27)
dr 1 5. A > A
= = = [[ IB(t + At) - B(t)l-Ada - [ B-Ada] (1T1.41)
t At gl 5

3 ; . . : 0B A

The first integral is evidently fA-—F-nda. The second term on the
right hand side can also be S1 = converted into an integral over
the surface Sl with the following identities

P A - e - -> > >
| B-fida = f B-(df x VAt) = f (V x B)-dlAt
33 2(t) 2(t)
-> - n
= [ [V x (V x B)]-fidait (I1.42)

il
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The last equality is an application of Stokes' theorem. Thus (II.42)
becomes

._>
%% = f[%%- Ve (GXE)]-ﬁda (11.43)
S
21

The frozen-in flux condition, eq. (II1.38), then follows immediately
from the hydromagnetic equation in the form of eq. (II.36).

The flux-preserving character of a plasma in the hydromagnetic
iimit imposes important constraints on possible fluid motioms, which
we will now enumerate. First define a magnetic flux tube to be a sur-
face generated by moving any closed loop parallel to the magnetic field
lines it intersects at a given instant. One creates this way a gener-
alized cylindrical surface which encloses a constant amount of magnetic
flux. By the definition it is clear that any patch of the surface of a
flux tube encloses zero magnetic flux. Thus as a consequence of flux
preservation, the fluid elements that form a flux tube at any dinstant,
form a flux tube at all instants.

Flux preserving plasmas are also line preserving in the following
sense. Imagine two fluid elements labeled A and B to be linked at
time t by a magnetic field line. Now a field line can always be de-
fined as the intersection of two flux tubes, and let us so define the
field line linking A and B at time t. At this time the two fluid ele-
ments both belong to the surfaces of the two defining flux tubes. Ac-
cording to our previous corollary, they therefore must share the sur-
faces of two flux tubes in common at all times. That is, A and B must
always lie at the intersection of two flux tubes, from which we may
conclude that if two fluid elements are linked by a field line at any
instant, they are always so linked. (For a fuller study see Stermn 1966) .

From the first corollary it is also easy to see that if a fluid
element lies inside of a flux tube at one time, it always lies inside
of it; and conversely if a fluid element lies outside of a flux tube
at one time, it always lies outside of it.

1I1.6 Thawing of Magnetic Flux

1f the generalized Ohm's law (II1.6) in its abbreviated form (I11.7)
is solved in terms of V x B and the result substituted into the general
expression for dF/dt (eq. II.43), we find with the aid of Faraday's
induction law (I.35)
%{ = - [ (Vx B -fda = - $ 2.0 = -EvE (IT.44)
Sy 2.(t)

fo

where EMF is the electromotixg force per unit charge around 2{(t) that
the intrinsic electric field E” produces., This result is not very



surprising since it is formally the standard relation between time rate
of change of magnetic flux and EMF. However, it is much more useful
than a merely formal relation, because E* is given explicitly in terms
of the macroscopic plasma parameters by (I1.8). Recall that the only
approximations that entered into the derivation of (II.8) were m_<<m,
and o V<<J, both of which are well obeyed. Hence, if the freezing %f
the magnetic flux to the flow and its logical consequences are to be
violated at any time or any place, the term or terms responsible for

the thawing are contained in (II.8).

Tn the numerical example which was meant to typify solar system
plasmas, the largest contributor to E* was the Hall effect term. How-
ever as we saw in eq. (II.18) this term only moves the condition of
freezing of the flux from the plasma as a whole to the electron gas
component., That is, if we define F for the electron gas in the manner
analogous to the definition of F fof the plasma as a whole, namely the
magnetic fiux through a closed perimeter moving with the electron gas,
then we can write in an obvious notation

dr
* * *
== = - [ (VxE)Ada = - [ B = - (B (II.45)
S e ) (t) e e e
1 e
in which
® > 1 <= N 33 > - > >
Z = T _e 7 el .
E, = nJ nev Pe+e2n[ at+V(JV+JV)] (I1.46)

is the intrinsic electric field in the frame of reference moving with
the electron gas component of the plasma. If thawing of the magnetic
f1lux from the electron gas component is to occur at any time or any
place, the responsible terms are contained in (II.46).

The ohmic term is ordinarly thought of in connection with magnetic
thawing, especially in collisonal plasmas. However, in the highly col-
lisionless plasmas of space, the other two terms need to be considered,
including the off-diagonal parts of the electron pressure tensor. These
matters have been pursued in studies of magnetic merging,which entails
strong but spatially localized violation of freezing. (For a review of
this subject see Vasyliunas, 1975).

In the case of an isotropic electron pressure and a polytropic
electron gas the second term in (II.46) becomes a pure gradient term
and contributes nothing to (EMF): )

The notion of freezing of a vector flux to the plasma flow can be
usefully reformulated at this level of retention of terms in the Ohm's
law if certain flow parameters are incorporated in the frozen quantity,

as will be shown in the next section.



1I.7 The Generalized Vorticity Theorem

One of the most important properties of ordinary fluids is their
tendency to preserve vorticity in the same sense that MHD fluids tend
to preserve magnetic flux. In this section we determine whether MHD
fluids have a vorticity conserving property in addition tQ their flux
conserving property. First the definition of vorticity, w, is needed

hZVxV (11.47)

> >

The vorticity theorem in ordinary hydrodynamics (E = B = 0) is
derived for a non-viscous, polytropic fluid. Then the Euler equation
(1.87) is simply

->

NYT

oV * .
=+ (00 V+ Vh =- Vb (I1.48)
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where ¢ is again the gravitational potential and the quantity h is
the specific enthalpy defined by (1.88), which we repeat here

% Y,
Vho = {fv (11.49)

%

More generally, one may say that a function, h“, that satisfies
(11.49) exists if and only if p is a function of p. Such a fluid is
called barotropic. In a barotropic fluid, surfaces of constant pres-
sure coincide with surfaces of constant density. In general constant
pressure surfaces and constant density surfaces need not coincide, and
in such a case the fluid is termed baroclinic. In a baroclinic fluid,
a function, h*, satisfying (II.49) does not exist, and the preservation
of vorticity, which as we shall see depends on its existance, does not
obtain.

Take the curl of (II.48) after substituting from the vector identi-

ty (1.90) to find

_—).
.§$ = Vx (Vxuw (11.50)

Q.

Equation (II.50) is formally identical to (II.36) with+g replaced by 0.
All of the congequences derived from it pertaining to B then apply with-
out change to w. In particular, in a non-MHD, barotropic, nonviscous
fluid, the flux of vorticity (called the circulation, I) is preserved.

—>/\
r = [ w-fida (11.51)
ar .
el I1.52
dt : (I1.52)

in strict analogy with equations (II.37) and (11.38).
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Let us gow try to extend the result to the MHD situation by re-
taining the J x B force in the momentum equation. At first appearance,
the attempt would seem certain to fail, because the derivation of (II.50)
required all non-inertial terms in the momentum equation to vanish under
the curl operator. There is no reason for V x (J x B) to be zero. How-
ever, a generalized vorticity theorem can be obtained if we utilize a
more exact form of the generalized Ohm's law. We retain the three
largest terms according to the dimensional scale analysis given earlier.

> - > l l > -> N
o= + = TI.53
ne v P e ne e ( )

in which only the case of a scalar pressure is considered. Now by
breaking the pressure explicitly into its two components, p = 12 + P,
the Fuler equation (I.87) can be written as .

B dV g aodara TxE IT.54)
c"dt+7hi+v¢] ne[Vpe+JxB] (1I1.54)
in which we have used p = min, with n the common electron and ion number

density, and

% Vp. :
YVh, = % (I1.55)
1 P

Substitution of (II.54) into (II.53) gives

m ->
G A oA L LU M y
E = -VxB+—2 [ rrad G hi)]] (I1.56)
and thus
5B e B >
) >
Bl yx TxB - =2[Z-Vx((Vxw] (11.57)
ot e 3t
Recombining then yields
>
9 >
g{f - Vx (Vx8) (I1.58)
where
e
Qe e (I1.59)
m,
i
B ->
Note that e L (I1.60)
mi 1

is the gyrofrequency of the ions. Hence
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(11.61)

In most applications w,>>w, that is, the vorticity of the fluid

motion is much less than thé ion gyrofrequency. In this limit we re-
cover the flux-freezing law given by equation (11.36). If the opposite
limit should ever occur, equation (I1.50) reduces to the ordinary vor-
ticity theorem.

one has either freezing of the magnetic field or of

In cenclusion,
but not of both separately.

vorticity or of their properly weighted sum,

T1.8 The MHD Helmholtz Equation:

MHD limit the amount of magnetic field

We have seen that in the
the motion.

of a closed loop of fluid elements is a constant of
unt of mass inside of a closed volume of

is evident that the amo
ements is a constant of the motion. If there is_ no compressicn

i
tching of the fluid in the direction parallel to B, it must
B) and mass density is a

e magnetic field and
11y in the MHD Helm-—

r stre
oliow that the ratio of field density (i.e.
constant. This kinetmatic relationship between th
asc density is expressed formally and more genera

1z equation, the derivation of which proceeds as follows.
write the continuity equation in the form (1.22)

~
+—
e}
»
(@)
N
~

d 1
)

-
\/vv = p

Ixpand the curl og the vector cross product in equation (11.36) to
arrive at (note dB/dt = 3B/o0t + (V-V) B)

N
iR > -
%&- LR (V) - BV) V=0

e

(11.63)

Divide (IL.63) through by p, substitute in for V-V from (II.62) and

recombine to find

> >
%E.(%Q - (%;qv) V=0 (11.64)

This result with § replaced by the vorticity, 5, is known in hydro-
dynamics as the Helmholtz equation. Its formal similarity to the con-
tinuity equation is evident. To confirm+the observation made at the
beginning of this section, note that if V does not change.in the di-
rection of B, then B/p is a constant of the motion.

Equation (II.64) has an important application tg_steady flows in
which a stagnation point occurs (i.e. a point where V = 0), for example
the stagnation point in the solar wind at the magnetopause of planetary
magnetospheres. In steady state, the equation may be rewritten as
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> >
(G.v).% 3 (%-V) v (I1.65)

At an grdinary stagnation point, the right hand side is not zero be-
cause V is changing from one direction to+the opposite direction across
the stagnation point in+the direction of B. But the left hand side
ought to be zero since V = 0 there. To maintain the equality expressed
by (I1.65) it is necessary for p to vanish at the stagnation point.
This is a characteristic of MHD flows which is not shared by ordinary

fluids.

An alternative resolution of the dilemma has been suggested
‘see Sonmerup, 1980). Instead of forming a stagnation point, MHD flows
may form stagnation lines such that V = 0 along a finite stretch in the
direction parallel to B. The stagnation line would terminate at both
ende at a neutral point in the magnetic field (i.e. a point where B = 0).
Lquation (11.65) is satisfied at a point which is both a gtagnation
point and a neutral point. Note that in parallel flows (Vl}B), this
condiciocn is met automatically and an ordinary neutral point can occur

in the flow.

T1.% The Double Adiabatic Invariants

Tt is possible in the hydromagnetic limit to derive prognostic
equations for the scalars p, and p, of the anisotropic pressure tensor
(1.27) in the manner in which equaEion (I.57) was derived for the
scalar pressure p. The strictly analogous procedure entails algebra
too lengthy for inclusion in this chapter. However, a kinetic theory
argument will be given here that results in the correct forms of adia-
batig)invariants for p, and p, which correspond to the adiabatic form
P/ 5/3 for the scalar pressure.

Consider a particle enclosed in a container, one wall of which is
a piston, which can be moved in and out in order to change the volume
of the container at will. The container will be used to simulate adia-
batic changes in the three equal components of the isotropic pressure ten-
sér  of a collision dominated gas and the two perpendicular components
and the one parallel component of the anisotropic tensor of a collision-
less magnetized plasma. In the first instance the energy gained (or
lost) by the particle in colliding with the moving wall will be shared
by the three components equally to preserve isotropy. In the second
instance the energy change will be shared equally by the two components
of p,. In the third instance the one component of p, will retain the

entire change.

The adiabatic condition is imposed by moving the wall slowly com-
pared to the speed of the particle in the container, and the collision
between the particle and all of the walls is assumed to be perfectly

elastic.

>
Let the velocity v of the particle be decomposed into cartesian
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(x,y,2) components with the x-axis parallel to the motion of the piston.
Let u be the speed of the piston measured positive when the piston

moves in the direction to decrease the volume of the container (compres-
sion). Then the change in i after one collision with the moving wall

is
vx(after) = vx(before) + 2u (11.66)
The corresponding first order energy change wa is then
hw = - m [v 2(after) -v 2(before)] = 2muv (11.67)
X 2 X y pe

Tet v be the number of components that share the energy acquired in

one collision before a second collision with the moving wall occurs.
Thus v = 3 for the isotropic gas, V = 2 for p, and v = 1 for py. After
the sharing of the energy takes place, the net change in wa is

M = (11.68)

Now the number of collisions the particle has with the moving wall
cach second £ is given b
coll & y

v
£ = = (11.69)

coll iR
®

where Lx ie the separation between the face of the piston and the
stationary wall opposite from it. Thus

X 1lu 2 2 u
r S PR s 11.70
dt v Lxmvx v wax ( )
But by the definitions of u and L
dLX
= - I1.71
u : (I1.71)

gubstitution of (II.71) into (I1.70) and subsequent integration give

S gn (w L 2p
X X

at ) =0 (I1.72)

The length Lx is related to the mass density p by the expression

mN_ (I1.73)

P= AL
X



in which the total number of particles in the container N, the area of
the container in the yz-plane,A = LyLz, and the mass of the particles,
m,remain constant during the motion of the piston.

The energy in the x-component of motion is related to the tempera-
ture of the gas and consequently to the pressure by

mp

1 1 X

? B e = = 74
w > k TX 5 5 (I1.74)

where (I1.62) and (I.63) have been used.

Consider first the isotropic case. Then combining (I1.71) with
v = 3 and (II.72) and (II.74) gives

= 0 (11.75)

Thus we recover the correct result for adiabatic changes in an ideal
monatomic isotropic gas (cf. eq. I.57).

To treat the case of the magnetized collisionless plasma, it is
necessary to recognize that two of the walls of our container form a
magnetic flux tube. Thus for p,, we must put v = 2 in (II.72) but also
the equation for L, becomes -

F = BL L (1I1.76)
Xy

where F is the magnetic flux enclosed by the container, which must re-
main constant as the piston moves, by the freezing laws described in
Section II.5. The distance L, is also constant by design. Hence,
after substituting into (II.7§) from (II.76) and dropping derivatives
of quantities that remain constant as the piston moves, there results
d Yx
S . dn (29 =0 11.77
dt ) ( )

This is seen to be the expression for the constancy of the first adia-
batic invariant (I.111), derived here by a statistical mechanics argu-
ment. Equation (IL.74)relating W_,pressure and mass density can now be
used to convert (II.77) into the éxpression for the first of the two
adiabatic invariants of magnetohydrodynamics

d Ps
S tn (=) =0 (I1.78)

The expression for p, is found by setting v = 1 in (11.72). Also
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since the motion of the piston in this case 1is parallel to the flux
tube, the equation for LX is again (I1.73), but with A = F/B, where I
is constant. The energy is expressed in terms of pressure by (II1.74).
Making the indicated substitutions and dropping derivatives of constant

quantities result in

: 2
d ., P.B .
S n (_gg y =0 (11.79)
0
The quantities
Py -
\ SSEE R (11.80)
n ;B
2
P”B
= (17.81)

are the two adiabatic invariants of collisionless MHD. 1In adiabatic
MHD flows, o, and 0, are constants of the motion. The discussion re-
latine to the quantity o defined in (1.82) applies to a, and G, as well.

Note that B can be eliminated from (11.80) and (II.81) by combining
them into a hybrid adiabatic invariant

4 3
2 . .11_/3 (Pizp“)l/d (II 8')\
(U’,L \»’4” ; - '—“_5'7'3""'—"— L. e
D
In the case p, = py,, (I1.82) reverts to the expression for the adiabatic

invariant for an isotropic pressure (II.75).

A more important hybrid combination of the (11.80) and (II.81) is
the expression for the pressure ratio

Py Oy 3

R (11.83)
P, Chyy ,‘2
: | 9

, . 3,2, . . a . o
The ratio B~/ is not constant for any known flow in solar system MHD
and is perhaps never constant in natural plasmas. It is therefore a
fundamental property of collisionless MHD flows to beccome anisotrepic.
The sense of the anisotropy (p,”Pn OT pn-p,) depends on how the ratio
83/,2 changes as the flow progresses. Tt will be seen in Section 1V
that a plasma becomes unstable if either sense of anisotropy gets too
large. Thus, there is a tendency for collisionless MHD flows to evolve
roward instabilities driven by the pressure anisotropy.



