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ITT. MHD WAVLES AND DISCONTINUITIES
ITI.1 Linearized Plane Waves in an Isotropic Magnetized Plasma

A significant portion of the phenomenology of MHD plasmas concerns
the presence of waves and discontinuities. We look first at the kinds
of small amplitude isentropic waves that can propagate in a homogeneous,
uniform magnetized plasma with isotropic pressure. Gravity will be
ignored, which excludes the possibility of coupled gravity-MHD waves.

The relevant equations are

vontinuity eq. Erdvmo+evl=o0 (11T.1)
T a}): N
buler eq. V = > E > \
et eq p[ﬁz—+ (V-")V] + Vp = J x B (IT1.2)
o s T Y L
Isentropic 2q. p o= ap (11T.3)
Maxwell's eqs. V ox ﬁ = uoj (III.4)
i .
Y Vx(V x B) (III.5)

The electric field has been dropped where appropriate by the approxi-
mations given in Section II.2 and eliminated from Faraday's induction
law bv use of the hydromagnetic approximation. The pressure p and
current density J can be eliminated by direct substitution into the

Euler equation.

Fuler eq. Vo, oo P :
uler.seq p[%%<+ V-] + avp’ = - %-Bx(vx8) (111.6)
) o

Equations (I;I.l, 5 and 6) are a complete, deterministic set for
the variables o, V and B, from which p and .J can be considered derived

quantities,
These equations will now be linearized and subjected to an usual

plane wave expansion. Denote zero-order quantities by subscripted
zeros and first-order quantities by a prefixed ¢. Then

o=p + &p (II1.7)
(6]

> - >

Vo= VO + &V (111.8)

- >

B =3B + 6B (IT1.9)

Zero-order quantities are constant in space and time. Quadratic and
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higher order terms in first-order quantities will be dropped. The con-
dition that first-order quantities propagate as plane waves is imposed
by the relation
i : >

8Q + 8Q e iw't - ker) (II1.10)
where ¢Q denotes an arbitrary first-order quantity, and its value on
the right hand side is now regarded as a constant amplitude to the
plane wave. The prime on w denotes the Doppler frequency. Since we
have allowed the possibility of a zero-order velocity of the medium,
the frequency of the waves will be Doppler shifted in our frame of re-
ference.

It will be useful to carry out the calculation in a cartesian co-
ordinate system with the z-axis defined to be parallel to B, and the
zz-plane defined to contain the propagation vector k (Fig. ITII.1). No
loss of generality is incurred by this choice.

8 =3B % (I171.11)

(T11.12)

Figure IIT.1 Coordinate system for describing MHD plane waves

Substitution of (III.8 through 10) into (III 1, 5 and 6) and i
making the plane wave replacements, 9/t - iw', VQ = -ikQ, V+Q = -ik-Q
and V x Q0 = -ik x Q, result in

TN < T¢) > K

(w' = K-V ) =5 = k-4V (LIT:13)

w\"o

(II1.14)
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(1 k \O) BO (k x y) ¢ - kz \y y (111.15)

Where the parameters C, and C are characteristic velocities of the

medium and are defined by A
2 v-1 D .
C. = ~vap e - TIT.16
O P Y 0] ( )
2
i B”
A j =
cf = 2— (IIT.17)
M MO«JO

ation (IIT.16) is the usual definition of the speed of sound. The
ning of (III.17) is given later. To arrive at (III.15) it is
rv to expand the curl of the cross product with the vector

- - > e > - -> o

T xB) = (B9) V- (V) B4V (VE) - B(V-V) (111.18)
-

and use the condition V:B = 0.

The ceoefficients on the left hand sides of (IIT.13-15) show that
the Doppler frequency w' is related to the frequency in the plasma rest
frame w by

> >
k-V (III.19)

in the remainder of the section, we will use the plasma rest frame fre-

quency .,

o o -_) . . 4 $
Ihe variables op and OB_can be eliminated by substitution to pro-
duce a single equation for &V

WY = cAEshik + ci (k26v % + K26V ) (I11.20)

S X z y
The three components of (I11.20) can now be written to provide three
equations for the three components of &V. Since the equations are
homogeneous, non-trivial solution exist only when the determinant of
the coefficient matrix vanishes. This then provides the dispersion
equation for the waves.

The resulting dispersion equation will be cubic in wz, implying
the existence of three wave modes, unless some are degenerate. One mod
can be isolated already at this point, leaving only two modes to be
obtained by the formal approach. The y-component of (IIT.20) involves
only &V _, and is therefore a pure mode, the dispersion equation for

which cgn be seen to be

e
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2 - ¢ 111.21
CA g (171.21)

/
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mode to distinguish this one from the two others that are described
below. The phase velocity of the wave which in general is given by

where the subscript i on w in this instance desienates the intermediate

~

k (11T7.22)

in the case of (III.21) becomes

v = C.cosb k .23
( ph)i Acosb k (I1I )

- -
where O is the angle between k and B (see Figure I11.1).
0

This very simple mode has a number of interesting properties. In
terms cf+the velocity perturbation, it is a purely transverse mode,
both to k and to B_, since &V_ ig orthogonal to both of these vectors.
Irom (II1.15) it is seen thaty(GB). = 8B y is also transverse to k and
BO. The mode does not entail a perturba¥ion in density, pressure Or
magnetic field strength. That is

bp). = (5B>i = 0 (I11.24)
A .
Y - . —> _> 1
The fact that (8p) = 0 follows from (TTT1.13) with k*(8v), = 0. It then
follows from (ILI.3) that there is then no perturbation 1n pressure.
The perturbation in field strength is given in general by
. . 8B
OB Ty
= = IIT.25
T B ( )
o o

as can be seen by expanding (ﬁ + 5%)2/3 2 to first order and comparing
the result with (B + SE)Z/B2 ©. Since o(éB )., = 0 for this mode,

. m o 2’1

(’B)i = 0 also.

The energy carried by the mode propagates strictly parallel to %o
at the characteristic speed Cy. The velocity of energy propagation
is the group velocity, which is defined in general by

T n@e L S BWS L BW sy 0 (111.26)
g * ok ok ok
dk X b z

From (ITII.21) there results

(Vg) = +C. 2 (I11.27)

i A
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The relationship between (8B) . and (6V) ., is useful in data inter—

. Lo o idic B . -
pretation applications to determine the direction of propagation of the
wave. From (IIT.15)

. (8B,
W 2 e Y ) (117.28)
B Z voi
(@]
: 5B
kK = - “i fﬁwzii (111.29)
Tz B (6V_ ). it
) yii

if the magnetic field and velocity perturbations are in the same

ction (i.e. both in the +y or both in the -y direction at a aiven

point and time), the wave energy is propagating antiparallel to B . If
o

they are in opposite directions, the wave energy is propagating
.)‘. -
parallel to BO

The mode we have just described was discovered by Alfven who re-
cognized that its basic properties result from a balance between the
inertial response of the mass of the plasma and the magnetic tension
resulting from gtretching a field line. The characteristic speed Cp is
called the Alfvén speed. As already noted, in the context of the three
wave modes of MHD, this mode is called the intermediate wave and Cp is
the intermediate wave speed.

The dispersion relation for the other two modes is found by writing
out the x and z-components of equation (I11.20), which gives after some
I q ’ 2
rearranging

Vi y -
(W™ - C2k2~C2k2) SV - Czk kv =0 (ITI.30)
S x A X S xz =z
- Czk kSV + (w™ -~ Czkz) sv =0 (T71.31)
S X X S z z

Setting the determinant of the coefficient matrix to zero and solwing

w2 /1.2 = -
for /k Vph’ we find
2 1 2.2 e AR
7 S e N - . Shara .’.)2
Vs ™3 [(cgrcy) = /(CS+CA) 4e;; Cyeos 5] (T11.32)

The two modes are differentiated by their phase speeds and accord-
ingly are referred to as the fast and slow modes. Ii is instructive to
consider the pgopagatipn of these waves parallel to BO(G = () and per-
pendicular to By (6§ = "/2) as special cases.
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ro i 2 S
K| EBO v . =1 5 (I11.33)

p f,s CA

2 2
C
Tl wH LS t A (TTI.34)
C n Fg ; O :

A wave that propagates parallel to éo is seen to be either a pure sound
wave (which is a longitudinal wave SV!’ﬁ) or a pure Alfven wave (which
is a transverse wave 8Vlk). The phase speed of a fast mode wave for
which kiBy is the Pythagorean sum of the sound speed and the Alfven
cpeed. The slow mode does nmot propagate perpendicular to EO, which is
4lso true of the intermediate mode, as can be seen from (III.23).

To demonstrate that the intermediate mode phase speed is indeed
intermediate between the fast and slow phase speeds, define the two
veleoedlty ratios

ZCzco 24
s U
R, = - A ARG N (I11.35)
S e Y e SR ) ¥
co+Cty * )— g + /s~
(C5HC) (CS+CA, ACA‘(-ZSQE & b et
a—&

where the symbols A, S and D are introduced for brevity and are defined

by their positioms in context. We want to show that unity lies between

R, and R_, that is, one is greater than and one is less than unity.

The possibility that either ratio may also be unity exists in the limits
§ =0 and 6 = 7/2. Unity lies between Ry and R_ if and only if '

- DR -1 <0 (I11.36)

\

2
(R,

In terms of A, S and D (I1I.36) is

s o So . A—s+/5? D+ 2_
(A8 Dy (& S+»_é3~9) - —Aa-g—[ﬁp- <0 (I11.37)
/D S

S+/ST-D  S=vS =D

Substituting back the original variables, we find

A <
QCA (coszﬂ—l) COSZO = 0 (I17.38)

That (IIT.38) is an obviously true statement verifies that the ordering

of phase velocities implied by the names of the three MHD wave modes is

correct.



Figure IIT.2 shows four examples of the relative phase speeds of
the three MHD modes and how they depend on the angle between E and BO.
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Figure ILT.2 Friedrichs Diagram. Polar plots showing the
dependence of the propagation speeds of the three linear wave
modes on the angle between the wave normal k and the magnetic
field B, for several values of the ratio of sound speed Cg to
Alfvén speed C,. TIn these plots By is parallel to the horizontal
axis. Speeds ﬁave been normalized with respect to /oI + C2

(From Kantrowitz and Petschek, 1964) . 5 A

In contrast to the intermediate mode, both the fast and slow modes
are compressive. That is, they entail changes in density (and hence
pressure) and changes in the field strength. Equations (111.13, 15
and 31) can be combined to give the dependence of (§Q)f,s and (SB)f’s

on the velocity perturbations.
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w

CS 5 f,s X (6V2)f,s (111.39)
(0] z
(6B) | E
o B o~k ($V) (1TT.40)
£,8 p‘() X x f,s

Mass compression (and rarefaction) is seen to result from velocity per-

4 e - - g @ . .
turbations parallel to B, and field compression (and¢rarefactlon) to
result from velocity perturbations perpendicular to By

As a lest characteristic of fast and slow modes, we find with
~he use of (IIL1.31) a single expression relating the density and field

strength perturbations.

mA )
KON - N 3 (8 .
1) R e 1 R OB e (IT1.41)
o, - _ﬁzk" B
uf,s Y5ty v
. 2 2,2 .
The combination w ~Cok’ is positive for fast mode waves and negative
for slow mode waves,”tﬁe demonstration of which is as follows
2.2 2 2 2 2
Z/h b ,: 1\_ - = ¢V Ead 08 §
Wi o LS{Z) X = éﬁph) ZCSCUS 0
k
2 2 R N e P
= + - + +C - 4 s @
. CS CA ZCSCOS 6 (CS A) 4CSCACOS
bult
¢ + C2 - 2C2cnez° s (Cilgész ACZCZCngq - acgéoszsinzé
s YA gt0® v T VitgTTA STATT S
~ _
< fa2,.2,2 252
- C+ - C 0 .
/(Cg LA> QCS ACOS

An important distinction between the fast and slow modes in thereby re-
vealed. Density and field strength perturbations are in phase for the
fast mode but out of phase for the slow mode. Correlations between

density and field strength oscillations can be used as a diagnostic to

identify the mode type.

Figure (III.3) indicates the geometrical basis for the variation
in field strength. The top figure depicts the field configuration of
an intermediate mode. The propagation vector makes an arbitrary angle
in the xz-plane, perpendicular to the paper,such that the wave fronts
intersect the plane of the paper in lines parallel to the y-axis. It
is evident from the equidistant spacing of the field lines that this
mode is non—compressive. The bottom figure shows a wave propagating in



Transverse Oblique

Fisure TIL.3 The compression and rarefaction of magnetic field strength
is determined geometrically by the alignment of wave crests and
troughs along horizomtal or oblique wave fronts.

the same plane as the ficld perturbation, such as is true for both the

fast and slow modes. The fact that the wave crests lie along the ob-

ligue lines that represent the wave fronts geometrically causes the
field lines to lie close together in one part of the wave and to be
relatively separated in another part. In this picture the fast and

1ow modes are distinguished by whether the density compressions co-—

“ncide with the strips where the field lines are close together or with

m

An important type of problem arises in solar system plasmas whemn
nagnetic field lines connect plasmas that are in motion relative to
each other. Examples of such situations are found in the motion of the
solar wind relative to the sun and the motions of the plasmas of a
planetary magnetosphere relative to the planetary ionosphere. The mag-
netic field plays the role of an elastic medium in MHD and a pondero-
motive force is generated which acts to reduce the relative motion. In
order that the ponderomotive force act equally and oppositely in the
two plasmas, the associated electrical current must link both bodies.
The current is therefore required to flow back and forth parallel to
the magnetic field that connects the two regions. The currents are
carried by MHD waves, which in a steady state situation will be stand-
ing waves but otherwise they will be propagating waves attached to one
or the other or both of the coupled plasmas. Tt is readily shown that
the only MHD wave capable of carrying an electrical current parallel to
the magnetic field is the obliquely propagating intermediate mode waves.
Thus, the oblique intermediate wave is responsible for the mechanical
coupling of magnetically linked plasmas. The verification of this

=3
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statement follows from MHD wave form of Taraday's induction law (TTT7.15)
which because of its importance to the present demonstration is re-
written here

5 > ~ ~
o= = (k2 Sv - '
' 5 (k x y) ( Vx)f,s kz(ﬁvy)iy (I11.42)

Now from the perturbation form of (II.4) the current carried by the

wave 1s

i >
6J = - — k x éB (I11.43)
)
substitution of (IT1I.42) into (I11.43) yields
) iB_ .
&1 = + = z IIT.44)
i kz((SVy)i ( kzx + kxz) (11T )

This first term of the right hand side is the current associated with
fast and slow waves, and the second term is the current associated

with the intermediate wave. 0One sees that only thg second term has a
vactor component parallel to Bg, i.e. parallel to z. The amplitude of

che parallel component is

- N iB iB
~ s (~ O
(’JJ)” = z-0d = wip kxkz(6vy) 1 =

(¢]

>

o ,2
k
U w
o

(@Vy)isinécosé (11L1.45)

or in terms of the perturbation magnetic field (T11.28)

(87), = - k(6B sind (111.46)

o

et

The factor i in the coefficient means that in the context of sinusoidal-
iv oscillating plane waves, (83). is ninety degrees out of phase with
(dvv)i and (SBV)ﬁ. Note that (63)”= 0 when 6 = 0 that is in the case of
parallel propagation. Thus, only obliquely propagating waves tarry
parallel current.

The properti4s of the MHD waves become significantly modified when

the pressure is anisotropic. The dispersion relation for an anisotropic
plasma is given in Section IV.1 on the firehose and mirror instabilities.
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II1.2 MHD Discontinuities

In the previous section the differential MHD equations were trans-
formed into a set of algebraic relations by first linearizing them and
then making the assumption that they had plane wave solutions. The
procedure lead to a description of the three MHD wave modes. A differ-
ent set of algebraic relations can be found to describe the opposite
limit, that is discontinuous rather than small amplitude variations.

Assume that a sudden change in the MHD parameters occurs across a
surface in space, the local radius of curvature Rp of which is much
greater than the local thickness &p. In effect, this is a statement
o1 what is meant by a discontinuity. Then there exists a scale regime
intermediate between Op and Rp in which the MHD parameters may be con-
sidered to be uniform on either side of the surface but to change dis-
tbinuously across it.

IT the discontinuity is moving with (non-relativistic) velocity

VS relative to a frame of reference in which the MHD parameters are
specified and in particular in which the flow velocity is V,it is al-
ways possible to make a Galilean transformation into a frame of refer-
ence in which the discontinuity is_at rest. 1In the rest frame of the
discontinuity, the flow velocity, U, 1is

> > ->

v o= V- Vg (111.47)

The conservation form of the MHD equations are particularly well
suited for the investigation of changes across a discontinuity. 1In
the rest frame of the discontinuity, we may assume time independence.
Ther the conservation equations for mass, momentum and energy (I.21,
46 and 48) become

V- (o) = 0 (I11.48)
V0 +F T - 0 (I1I.49)
1 4= > = -
VG +u B T+ 3 = o (1T1.50)

The gravitational terms have been dropped, as in the previous study of
MHD waves. The heat flux vector has also been dropped in the energy
equation, although in the case of compressive, collisionless MHD shocks,
it could represent an important sink of energy. The electric field
terms will be dropped from the Maxwell stress tensor, in accordance
with the approximations discussed in Section IT1.2. The anisotropic
form of the pressure tensor (eq. I.27) will be retained, but examples
will be given also for the case of a scalar pressure. The internal
energy corresponding to the anisotropic pressure is

TR %.p” (IT1.51)

i



The differential equations (I11.48-50) are converted to algebraic
equations by integrating them over a volume in the shape of a thin
cylinder with unit area faces aligned parallel to the surface of the
discontinuity and bracketing it, such that the discontinuity cuts com-
pletely through the side of the cylinder, dividing it into equal parts.
The cylinder is designed such that the area of the side is negligible
compared to unity. Gauss' law is then used to replace the volume in-
tegrals by an integral over the surface of the cylinder. The contri-
bution from the side is negligible by design, and since the unit area
faces lie in the regions of constant parameters on the two sides of the
discontinuities, the integrals over them are the integrals themselves.
The final result is then

~ ~ -

-Q, = 0 (111.52)

j
n, -( + n. . =
i i 2 "2

in which subscripts 1 and 2 distinguish between quantities evaluated on
the two sides of the discontinuity, A is the outward pointing unit nor-
mal to the cylinder faces, and Q designates any of the three composite
quentities on which the divergence operator operates in egs. (II11.48~50).
in the case of (IIT1.49), Q is a tensor.

Since by construction ﬁl = —%2, let

S . ~ ~

n £ na, = -n

: 5 . (ITI.53)

eplace 1y and 55 in (ITI.52), and define the difference operator

i1t = 0, - Q (ITT1.54)

Then the equation for the conservation of mass, momentum and energy take

the form
{Fptn]] =0 (111.55)
- <> <=

[[cUnU + (P - T)-n]] =0 (II1.56)
2

L2 1 Bn

[[GpU” + 2p, + S pw+ (Pupy) ) Uy 5 11 =0 (I11.57)

L - B n n

where a subscripted n denotes components parallel to n. From the magneto-
hydrodynamic expression for the Poynting vector (11.28) we can write S
in the form .
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t e
SO S - B [.58
S UO <BtUn nUt) (IIT )

To this set of equations we must add the differgnce equations that
result from integrating the two Maxwell equations V.B = 0 and VxE = 0
{in steady state) across the discontinuity in a manner analggous to the
rrearment of the conservation equations. In the case of VxE = 0 the
domain of integration is the area of a thin strip with unit length sides
parallel to and bracketing the discontinuity, and Stoke's theorem is

used. The result is

[{BrW] = 0 (I11.59)
1{31]} = 0 (T11.60)
whers E. = E.t and t is a arbitrary unit vector tangent to the surface

“t = :
5f iie discontinuity (t-n = 0). Replacing the electric field by -VxB

cives in nlace of (III.60)

&

ff[us, -uB ]l = 0 (1T11.61)
n t tn

Tt is useful to decompose the vector equation (I11.56) into com-
ponents parallel and perpendicular to A. Scalar multiplication of
(T11.56) with A and £ results in

2 2
2 P By
[oU” + (pu = py) 5+ Pe+ 331 = O S
" B o
BB
‘ r T 17 e = = .63
[[pUu U - ¢ W 1] 0 (IT1.63)

in which the combination

Pun — p_'_
g =z 1= —F

2
BT /u
(e}

(I11.64)

appears so frequently, it is given its own symbol, and we have used the
relation

r?1y = 2 + 8231 = (13,1 (T11.65)
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that follows from (III.59).

The six equations (II11.55, 57, 59, 61, 62 and 63) form the com-
plete set of continuity relations available from the conservation equa-
tions and Maxwell's equations. If the problem of interest is to deter-
mine the parameters on one side of the discontinuity given the parameters
on the other side, there are seven unknowns 0, Up, U , Pys Pus Be, and
B,. If the pressure is isotropic so that it contributes one scalar to
the list of unknowns instead of two, the set is completely deterministic.
Otherwise an additional relation must be imposed by theory or measure-
ment to close the set.

There exists a classification scheme for MHD discontinuities that
jvides them according to whether or not the plasma flows through the
iscontinuity and if it does not flow through 1it, whether or not the
magnetic field penetrates it. The scheme is

5
A
a
d

Centact Discontinuity U, =0, B, #0

Tangential Discontinuity Uy = 0, B, =20

Shock Waves Up # 0 —
Parallel Shocks " B, =0
Perpendicular Shocks . B 0

n
0Oblique Shocks Bt%O, Bn%O

(Fast, Slow, Tntermediate)

Contact Discontinuities: If the no-flow condition U, = 0 is imposed on
the

six continuity relations, one quickly finds that all of the listed
rameters are continuous across the discontinuity except density, 0,
ch is left unspecified, Thus the density may change across a con-
tact discontinuity, but since the pressures (p,, and p,, or p in the
case of isctropic pressure) are continuous, the tempe;ature must change
alsc to maintain the pressure constant. Since a discontinuity in tem-
perature should rapidly be dispersed by heat flux parallel to the mag-
netic field (recall 8_#0),such a discontinuity is not expected to occur
in sclar system plasmgs except possibly for short intervals of time.

Tangential Discontinuities: The dual imposition of the conditions of
no cross flow (Un=0) and no field penetration (B,=0) leads to one non-
trivial continuity relation

e 17 = 0 (I11.66)

This equation expresses the condition of static pressure balance in the
direction normal to the discontinuity. Thus p, may change across the
discontinuity, but B%/Zuo must change to maintain constant total static
pressure. This type of discontinuity appears to be relatively common in
solar system plasmas.
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Shock Waves 1: Ordinary (non-MHD) Shock Waves:

It is helpful to begin a discussion of MHD shock waves with a re-
view of ordinary gas dynamic shocks. Since the pressure in this case
is a scalar, we may make the treatment more general by leaving the ratioc
of specific heats unspecified.

The continuity relations reduce to

([pU 11 = © (I11.67)
[ToU” + pl] = 0 (I11.68)
[fov U 11 = 0 (IT11.69)
R . o

([ pU p)bn}] = 0 (ITI1.70)

the enthalpy utp = yp/(y-1). Combining (III.67) and (III.69)
that [{U_]] = 0, that is, the tangential component of the flow is
continuous in gas dynamic shocks. We may therefore transform away the
common J_ by a motion along the shock plane. This transformation does
not affect any of the other quantities,but the index n on Uy may now be
suppressed, since in the new frame U = 0.

Equations (11X.,67, 68 and 70) form a complete set for the down-
strean variables p,, U, and p, if the upstream variables p,, U,,and p
are vegarded as known. A single equation for Uy is obtained by elimi-
rating n, and p, between the three equations. This can be written in

xxxxxx

5 7n 1 N 2
3 ?gi (+ =5)U,0, + %;%—[1 + —~3~—j5—] Uy =0 (II1.71)
e yM§ il (y-1)mM]

in which the upstream sonic Mach number, My | is defined as the ratio
of the flow speed to the sound speed. It 1s given in general in terms
of the other variables by

2w o (111.72)

New since the derivation of the continuity relations did not pre-
sume the existence of a discontinuity, they must also be consistent with
the absence of a discontinuity. That is equation (III.71) must have

(Uy~Uy) = 0 as one of its roots. Equation (III.71) can be factored into
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y-1 2 2
(U.-U Yiu, - +—= (1L + ———) ul] = 0 (111.73)
2] 2 +1 2 1
L (=DM

The shock solution is obviously the second factor, which we write in
terms of the downstream-to-upstream velocity ratio

U

N

5
i
m

(=1 2 N :
SEE et el (I1I.74)
"1 * (‘{+1)Mif Mi > T

density and pressure can now be found by substituting (III,74) back
into the original shock equations

W20 Lo wlii-é.__.- - > ’“ (111.75)
“ 2l My > e =1
M7
A
2
2 il = : s B2 (TII1.76)
Py Y+ 1 M’f R Z !

. . . b 2
Note that in the limit of weak shocks (M, + 1), the parameters become
continuous across the shock, That is, the shock disappears.

The shock waves that occur in solar system plasmas are in many in-
stances strong shocks that satisfy the condition of the hypersonic
limit, % >> 1, The bow shocks of planetary magnetospheres and flare-
driven sGlar blast waves are examples of strong shock waves that occur
in the solar wind. The shock solutions have the interesting property
of predicting an asymptotic limit on the degree of compression that a
strong shock can produce. The hypersonic limits to the density and ve-
locity ratios are given explicitly in (ITI.74, 75). The hypersonic
limit of the post-shock pressure is given in (IIT.76). If the physical-
ly correct value of v (v = 5/3) is used, the asymptotic limits to the
ratios are o, /p, = 4 and U,/U, = 1/4. The gas can be compressed and
slowed down By a factor of “no more than four. The shock wave also heats
the gas. The shock relations do not predict an upper limit to the
degree of heating as the Mach number increases

P "
T - 2 N 1 MZ Uf (I11.77)

- P2 M0 > o (yr1)?

NNt
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The temperature of the solar wind gas heated by bow shocks and blast
waves can be more than an order of magnitude greater than the pre-

shock temperature.

In gas dynamics shock waves play the role of converting supersonic
(M>1) flows to subsonic (M<l) in situations where the M<1l condition is
needed to communicate to the fluid by means of pressure waves inf orma-
tion about externally imposed constraints so that the fluid can adjust
to them. The flow of a supersonic gas around a blunt body (e.g. the
solar wind around a planetary magnetosphere), requires the interposition
of a standing shock wave (usually detached from the body) to allow the
gas to flow around the body. We can demonstrate directly from the shock
solutions that the downstream sonic Mach numer is less than or equal to

unity.

n_v
Ma V.

2 _ . R
2

DN

(Y~1)M§ + 2
(111.78)

2 1
2
2 Yp, 2 - (y-1) Mi e Y

2
Note that in the limit of weak shocks M, = 1, (I11.78) gives M2 =1,
rhat is, there is no change, as expecteé. Differentiation of %111.78)

“h e Fhe 27aM2 1 i ini i
shows that dMZ/dMl is a negative definite quantity

5M2 11 2 '
—2 - - =1 < 0 (II1.79)
dki 2yMS - (y-1)
2 2 . 2
Hence M, < 1 for M > 1. 1In the hypersonic extreme, M2 approaches a

limiting value, which for y = 5/3 is M2 - 1/5.

A fundamental property of shock waves is their adiabatic character.
They dissipate some of the flow energy and convert it to heat, thereby
raising the specific entropy of the gas. This statement can be verified
directly by calculating the change in the adiabatic constant o of eq.

(1.82).

& P, Pq Y v+1 2 2
2o 2y - g el - OeD] (A + Y ari.s0
! P 9 ! M

when M2 = 1. The trend in the change in

The relation reduces to G, = O
%ers

uz/ul for higher Mach num is given by

2 Y-l
e e
d2 =) = (—;1) 7 (Ml—l) (111.81)
dM O’l Y M

1 1
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Because of the (M l) term, az/al changes very slowly in the low Mach
number range xM“ ? 1). For M% # 1 the gradient is always positive,

implying that &2 > oy when MP > 1,

Shock Waves 2: Parallel Shocks We return now to the discussion of
shock waves in magnetized plasmas. The dissipative nature of the shock
tends to change the components of the anisotropic pressure in ways that
are not predicted by the continuity relations (recall that there is one
more unknown than there are equations if p,, and p, are retained). With-
out additional information, it is not possible to learn how Py and Oy
separately change across a shock wave. Therefore, we must sacrifice
this level of detail, and represent the pressure again by its isotropic
torm. In this case we may also leave Y arbitrary,

~

varallel MHD shock wave is characterized by
/hen this condition is imposed on the MHD continuity re-—

P
4

one finds that they reduce identically to the ordinary gas
shock relations that were reviewed under the previous heading

iz, eqs, II1.67 through 70). The magnetic field strength dis-
as an explicit variable except in Equation (III.59) which since
becomes in this instance

[zl =0 (I1I1.82)

'he field strength is continuous across the shock,

The treatment for the non-magnetic variables is identical to that
developed for the pgas dynamic case and all of the solutions given there
apply in this situation also, In particular we were allowed to trans-
‘orm a frame of reference in which Uy = 0. In this frame then UIIB
and we have prescribed the conditiop necessary for the existence of an

equipotential domain (see Section IT.4). Thus there exists a stream-

line constant K such that

B o= kol (111.83)

it follows that since both B and pU are conserved across the shock in
this frame of reference

[[xll =0 (111.84)

ils result emphasizes the inert response of the magnetic field to its
passage through a parallel shock.

Shock Waves 3: Perpendicular Shocks. Consider next as the oppgsite

limit to the parallel shock, the perpendicular shock in which qu, that
is B = 0 and B, = B. We note at the outget that the continuity rejation
for tangential momentum (I11.63) again shows that Ut is continuous




o
n

across the shock, and hence as in the previous cramples may be set
equal to zero.

The continuity relations for the perpendicular shock can be written

as
[{pul] = 0 (I11.85)
2 BZ
[{oU” + p +5—11 =0 (I11.86)
2u
(o]
) B2
[[(pU" +—— P + —)Ul] =0 (1771.87)
2 v-1 H
[e]
[[uBl] = © (111.88)

The first and last of these can be combined to show that the field
strength must change across the shock in the same proportion as does
the density. That is

[[B/p]l] = Q (I11.89)

As in the procedure adopted for treating the continuity relations
of ordinary gas dynamic shocks, we assume the upstream parameters to be
given, in this case including the field strength By. and solve for the
downstream parameters. The elimination of Pys Py and Bo results in a
cubic equation for U,. The trivial solution U2 - U1 = 0 can be factored
out leaving the guadratic equation

U
2 y=-1 27 1 1 2 2-— 1 :
e L ARk S (I11.90)
ys]  2A] 1 A

—

Tn (II11.90) the sonic Mach qumber is designated by the symbol S and A
is the Alfvén Mach number

. 2
g2 =y = BY (111.91)
Yp
2
A2 = PZV_ (111.92)
B™/u
(6]

One of the two solutions of the quadratic equation is non-physical in
that it gives a negative value for Up. The other solution gives the
velocity ratio for a perpendicular MHD shock of arbitrary sonic and
Alfven Mach number. In the 14imit B > 0, i.e. A 7%, equation (I11.90)
reduces to the corresponding equation for ordinary gas dynamic shocks
(111.74). Therefore, in the dual hypersonic limit, A2 > o and S

- o
b
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we recover the same limiting expression for UZ/Ul, ()7/‘,,L and pq/pl,
In particular in the dual hypersonic limit g =

0. B U :
A e S (117.93)
{'1 Bl L'2 N

fhus in the case of a strong perpendicular shock such as a planetary
bow shock or a solar blast wave (for both of which v = 5/3), the densi-
Lv and the field strength jump by a factor of four, and the velocity
(in the reference frame of the shock) drops by the same factor.

Shock Waves 4: Oblique Intermediate Mode Shocks

case of oblique shocks (B,#0, Bt¢0), there exist three
shocks that correspond to the three modes of small ampli-
fude MHD waves. The two modes corresponding to the fast and slow mode
waves are coupressive, The mode corresponding to the intermediate mode
wave is non-compressive, but if the pressure is anisotropic and p, and
p, change across the shock, the density will also change. (Recall that
ih the case of an anisotropic plasma, the continuity relations do not
We take up here the intermediate moce

specify the change in p,, and p,).
shock and retain the anisotropic form of the pressurc tensor.

The distinction between intermediate shocks and the compressive
shocks is revealed immediately by multiplying the continuity relation
for tangential momentum (III.63) by the continuous variable (B,/pUn)
and adding to the result the continuity relation for tangential electric
£ i {(IT1.61). One obtains this way

o

o]

LoL

B - ol o . /
[1a- £ — n) BtUn]] = 0 (TIL.94)

when this condition is satrisfied by the vanishing of the term in
parentheses, the shock described is the intermediate mode. The
equation shows that when (1- & B2/yu pU%) = 0 on one side,it is zero on
the other side as well. (The hygrig pgssibility that B, = 0 on the
other side, referred to as a switch-off shock, will not be considered.
Such structures, if they exist, have not been demonstrated to play a
significant role in solar system plasmas.) The term in parentheses is
not zero in the compressive mode cases. Thus
2
n

1- £ e 0 (intermediate mode shocks)

(I11.95)

i o 2 2 . .
in which ¢ B(1 /VO“U may be evaluated on either side of the shock and



thus this factor is continuous across an intermediate mode shock.
Note that since Bn and QUn are continuous, it follows further that

[[&el]l =0 (111.96)

Since the change in & can not be specified and £ can in principle be dif-
forent on the two sides, (ITI.96) shows that the density can in prin-
ciple change across an intermediate mode shock in an anisotropic plasma.
rfrom this one sees that the same statement can be made concerning the
propagation velocity of the shock, Un, since pUr is continuous. The
special but important case of an intermediate mode shock in an isotropic

plasma should be noted separately
i{Uq]] = [[p]] = 0 (isotropic pressure, £=1) (111.97)
intermediace mode propagation equation (1I11.95), the

. velocity vector can be found from (II1.61 and 63). The
written in the form (Hudson, 1970)

T = &0 1/2 B
ey o= @B 1 (111.98)
B s

O

-son (ITT.95) together with the continuity of B_ reduces the con-
uirv relation for the normal component of momentum (IT1.62) to

2
4 55_-3] =0 (F arbitrary) (IT1.99)
e

o}

Tt is worth noting that in the isotropic case (£=1) the continuity
relation for energy for this mode simplifies to

tlpll:= 0 (5 = 1) (I11.100)
From which with (III.99) and [[Bn]] = 0 it follows that

A R . N

[IBS1] = [[Bll=:0 (E=1) (IIT.10L)

Thus an intermediate mode shock wave propagating in an isotropic
plasma is non-compressive and non-dissipative. It merely changes the
directions of the magnetic field and the flow, while perserving their

magnitudese.

Shock Waves 5: Oblique Fast and Slow Mode Shocks

The two compressive MHD shock modes have the following character-
istics in common with the small amplitude fast and low modes waves.
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The density increases across both of them, but in the fast mode shock
the slow mode shock it decreascs.

the field strength increases while in

Both types of shock can result from the non-lincar evolution of finite
amplitude fast and slow mode MHD waves. Thus, the relationship between
the shocks and the waves is a direct heritage. We will consider only

the case of isotropic pressure in the discussion of the compressive

shocks.

Both types of compressive MHD shocks possess the notable property
that the magnetic fields on the two sides on the shock and the normal
ro the shock are coplanar (that is (B qu)-ﬁ = 0)., This result, which
referred to as the coplanarity theorefi, follows directly from (1iT1.94)

e Choose the
gential vector £ to be perpendicular to (By), = By - B fi. That is
* = 0 for this choice of t. But by (I71.94) B, .t74d

is
in which £ = 1 and the factor in parentheses_1is not zero.
i s

is then zero also,

we have shown there is a choice of £ which is perpendicular_to 5.
101 1 v . . . N . I 4

and by definition it 1s also perpendicular to m. Hence Bl’

aad 1 are coplanar,

The coplanarity theorem has found use in the analysis of data on
shock waves obtained from measurements in space. The orientation of
rhe shock surface as given by its normal fi can be obtained from a
measurement of the magnetic fields on the two sideg of the shock by
the following procedure, Since Bn is continuous, B.=B, contains no
normal component. Thys B,-B lies in the plane of the shock. By the
‘oplanarity theorem, BlXBE a%so lies in the plane of the shock. Hence

(111.102)

~

a §1<31‘39> X (81XB7)

Tt is not useful in the case of compressive oblique MHD shocks to
proceed as in the previous examples of eliminating all but one of the
downstream variables to arrive at a single equation for, say, (U D,

The resulting equation is fifth order, and become fourth order after

the trivial solution (U ), - (U ), = 0 has been factored out. However,
an important ordering of the pogt—shock normal flow velocities can be
stated on physical grounds. In order to avoid the non-physical possi-
hility of an intermediate mode shock catching up to a preceding fast
mode shock or a slow mode shock catching up to a preceeding intermediate
mode shock, the post-shock speeds must be ordered according to

9 Bn 2
N 2t Spri’ ity S 7
(,)bn )2 (fast) y > (pUn)l (slow)

(I11.103)

ced of an intermediate mode shock
dering determines whether the
the shock, as can be seen

in which BDZ/p 0 is the propagation sp
in an isotropic gas (eq. IIT.95). This or
field strength increases Or decreases across
by multiplying (IT1.94) by the continuous variable U
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2 n
[[(.OUn - i;°Bt]] =0 (II1.104)

and solve for (Bt)2 in terms of (Bt)l

2 Bi
~TT — ———a—
(}—’Ln >l U
( \l = o L=
(B, 2 (Bt)1 (II1.105)
2
T Ly = 11
(pU )y =
(]

X Consiger first the7case 05 a fast mode shock. Then both
(cU;}i > B“/u  and (pUn“), > B~/u_, the first because the upstream
flow speed must be super-Alfvenic in grder to have a fast shock at all,
and rhe second by (IT1.103). But (pU‘)1 > (pU )2 since by factoring

, . . n-l . .

out the continucus term pU , this becomés (U ). > (Un)z’ which is
roaranteed by the compressive nature of the shock. In"summary, then
both the numerator and the dencmirator in (I11.104) are positive, and
the numerator is larger than the denominator, Hence

(8b)2 > (Bt)l (fast mode shock) (I11.106)
and since (B ). = ) i ]
nd since <Pn’2 (Bn)l, it also follows that

B, » B, (fast mode shock) (I11.107)

in the case of a slow mode shock, both the numerator and denomina-
LoT are negative, the first because of (I11.103) and the second because
('Un)Q must be even smaller than (Un)l by the compressive nature of the
shock, The latter condition also means that the magnitude of the de-
nominator is greater than the magnitude of the numerator. Hence

(Bt)z < (Bt)l (slow mode shock) (111.108)

and again since (Bn)2 = (Bn)l

B? < B] (slow mode shock) (111.109)

Figure TIT.4 shows the diiference in th- magnetic signatures of
fast and slow mode shocks. On the downstream side of a fast mode shock
the field bends away from the shock normal, giving rise to a compression
of flux density, which is the same as an increase in field strength,

On the downstream side of a2 slow mode shock, the fieid bends toward the
shock normal resulting in a reduction of field strength.
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Figure TII.4 Magnetic signatures of fast and slow mode shock waves

All three MHD shock modes have been observed in solar system
plasmas, especially in the solar wind. Slow mode shocks play an ex-
pecially important role in some models of magnetic merging (Vasyliunas,

19755 .
1. MHD INSTABTLITIES

This section reviews the four basic instabilities to which MHD
fluids are subject. Two of the four are common to all fluids, namely
the Kelvin-Helmholtz instability, colloqually known as the "wind over
water'" instability, and the Rayleigh-Taylor instability, which is called
the flute instability in plasma physics and the interchange instability
in magnetospheric physics. The other two, the firehose instability and
the mirror instability, are caused by differences between p,, and p, in
an anisotropic magnetized plasma, and are therefore peculiar to colli-
sionless MHD fluids. We begin with instabilities driven by pressure

anisotropy.

iv.l The Firehose and Mirror Instabilities

In the theory of small amplitude MHD waves in an anisotropic
plasma, these instabilities present themselves in the form of non-
propagating, purely exponentially growing waves. The firehose instabili-

ty is an exponential growth of the intermediate mode, and the mirror in-



