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5 Fast Mode Shock
_=Slow Mode Shock

ure IIT.4 Magnetic signatures of fast and slow mode shock waves

All three MHD shock modes have been observed in solar system
plasmas, especially in the solar wind. Slow mode shocks play an ex-
pecially important role in some models of magnetic merging (Vasyliunas,

1975 .
1V. MHD INSTABTLITIES

This section reviews the four basic instabilities to which MHD
fluids are subject. Two of the four are common to all fluids, namely
the Kelvin-Helmholtz instability, colloqually known as the "wind over
water'" instability, and the Rayleigh-Taylor instability, which is called
the flute instability in plasma physics and the interchange instability
in magnetospheric physics. The other two, the firehose instability and
the mirror instability, are caused by differences between p, and p, in
an anisotropic magnetized plasma, and are therefore peculiar to colli-
sionless MHD fluids. We begin with instabilities driven by pressure

anisotropy.

iv.1 The Firehose and Mirror Instabilities

In the theory of small amplitude MHD waves in an anisotropic
plasma, these instabilities present themselves in the form of non-
propagating, purely exponentially growing waves. The firehose instabili-
ty is an exponential growth of the intermediate mode, and the mirror in-
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stability as an exponential growth of the slow mode. The mirror insta-
bility materializes first and grows fastest when the normal to the wave
front k is oriented nearly perpendicular to the magnetic field.

To confirm the existence of these instabilities, to determine the
conditions under which they occur, and to establish their properties, it
is necessary to derive the dispersion relation for small amplitude MHD
waves in an anisotropic plasma. The analysis proceeds analogously to
that carried out in Section III.l for small amplitude MHD wave in an
isorropic plasma, except that in the Euler equation (III.2) the gradient
of the scalar pressure is replaced by the expressions for the divergence
of the anisotropic pressure tensor given in Section I1.16, and the scalar
vdiabaric reiation (1II.3) is replaced by the double adiabatic relations
77 .80 and 81). ZExplicitly, this procedure leads to the following form
for the plane wave representation of the pressure perturbation

% N 8B
pay Sp z
T > . P ) -+ eSS o) R
0 (pl)o B (p”)o] kxX
o) o
—éBz §o 6Bz
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b —— 5 — I X B (IV.].)
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tn which the unit imaginary number i has been suppressed since it ulti-

mately multiplies all terms, and % x B has not been replaced by its wave
erturbation form, because this reduction has already been given in

1.14). The equation is referenced to the coordinate system which was

previously and which is shown in Figure ITT.1.

The wave perturbation forms of the continuity equation and Faraday's
induction law (eq's ITI.13 and 15) are now used to eliminate the density
rnd field perturbations, leading to a single equation for the velocity
turbation, corresponding to eq. (I11.20) for the isotropic pressure
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+ [CTk k SV, + scgkzav ]
I™% 7z 'x z z
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in which we have defined for notational cenvenience the (pseudo) ani-

sotropic sound speeds
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(p ) (pn)
; et -2 (1v.3)

e} [e]

The symbols Ci and £ have been defined previously (eq's ITII.17 and 64).

As before the procedure from this point is to write out explicitly
the three vector components of (IV.2), identify the coefficient matrix
of the dependent variables SV _, 8V, and 8V_, and set the determinant of
that matrix to zero to obtain’the dispersion equation for the waves.
Again however the y-component contains only the independent variable
va, and therefore is itself a pure mode. One obtains the anisotropic

form of the dispersion equation for the intermediate mode wave directly
from the y-component,

) -
L I .“-‘)‘ kQ (IV.Z‘\

. = (O )
T o] A z

Comparison with the isotropic form of this equation (I11.21) shows
that the effect of anisotropy is the introduction of the multiplicative
factor %,. Whereas the isotropic form of this equation is positive de-
finite, &£, may be negative in which circumstance the intermediate mode
will exhibit non-propagating, pure exponential growth. This is the
firehose instability.

The threshold for the onset of the instability is EO = 0, 1In
general we may classify the behavior of the mode according to whether iO
is positive, zero or negative.

&6 > 0 , Propagating intermediate mode
ZW = 0 , Non-propagating, non-growing perfectly inelastic
- perturbations
io < 0, Firehose instability (non-propagating,pure exponential
growth)

In the propagating wave regime (£o > 0), the phase speed (and the group
velocity) can be greater or less than its value for the isotropic case
(eq. 111.23) depending on whether Eo is greater than or less than unity.

(v ). (anisotropic) = VE (V .). (isotropic) (1V.5)
ph’ i o} ph'i
To understand the physical reason for the dependence of w. on z

. i . . . o
in (IV.4), it is useful to rewrite the expression for go in the form

1 = Pn
L Jo (IV.6)



The right hand side of (IV.6), which contains the full effect of pres-
sure anisotropy on this mode, shows that one musf consider the contri-
butions that all three pressures, p,, p, and B /2“0’ make to the fre-
quency of the wave. Recall that in the isotropic case, the frequency
is fixed by balancing the inertial force exerted by a volume of plasma
that is oscillating transversely to the magnetic field against the
magnetic tension the motion engenders in stretching the field. Since
an increase in the restoring force increases the frequency, and the
right hand side of (IV.6) measures the change in frequency resulting
from pressure anisotropy, it is evident that p, acts to increase the re-
storing force and p, acts to decrease it, When the two pressures are
ial (i.e. isotropy) their effects cancel. Tt can be seen qualitative-
iy from Figure IV.1l that both effects can be described in terms of a
centrifugal force. The centrifugal force exerted by the thermal motions
of particles moving parallel to the bent flux tube acts against the mag-
tension, which is attempting to straighten the tube. The centri-
fugal force e“ertcd by the thermal motions of particles gyrating perpen-
dicuilar to the flux tube acts against the tension on the oustide but

‘th the tension on the inside. However, the bend increases the density
of narticles gyrating on the inside and decreases it on the outside,

s there is a net force tending to straighten the tube.

When Py 7 Pn the combined pressure effect and magnetic tension in-
crease the restorlng force over that of pure isotropy, the frequency
speed therefore increase. When p,, > p,, the reverse occurs,

i if the imbalance p, - p, should exceed the magnetic tension B /L
tne net restoring force becomes negative, and the bend grows under tne
furce the bend itself produces.

onsider next the dispersion equation for the two compressive modes
anisotropic plasma. Setting to zero the determinant of the coef-
icient matrix obtained from the x and z-components of (IV.2) gives

2 2.2
Oy R B e B T
f,8 z f,s = X o Az - X oz (1V.7)

Before isolating the mirror instability, it is instructive to see how
parallel propagation and perpendicular propagation are modified by the
anisotropy. As in the isotropic case, when ky = 0, equation (IV.7) has
two solutions which can be written in terms of the phase speed.

2
kII§ . 2 Wis T ‘,3(3"2 (1V.8)
P s e
‘o A

The first of these corresponds to a sound wave propagating parallel to
the field in a gas for which 'y = 3, which is the value appropriate to

one degree of thermal freedom. The second is the solution for the inter-
mediate mode wave (eq. IV.5) with 6 = 0. When kz = 0, equation (IV.1)
again has two solutions



Figure IV.1

O.

4

V) =

~J
B~

Magnetic flux tube in "firehose" configuration.
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The first corresponds to the perpendicular fast mode wave, which has a

phase speed

r

sound speed
corresponds
nlar to the

n

¢

That a

equal to the Pythagorean sum of the Alfvén speed and the
of a gas with two degrees of freedom. The second solution
to the slow mode wave, which does not propagate perpendic-
magnetic field.

slow mode wave with its wave normal oriented nearly perpen-

dicular to the magnetic field can be unstable is seen by utilizing the

approximations that apply to this mode and this orientation.
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These are
therefore the O term can be dropped compared to the wg
Then the dispersion equation, can be solved

The right hand side is negative, and therefore the wave is unstable,

if
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Rewriting the instability in terms of pressure ratios,

Py
<E:)
O

> 6(1 +%~> (MHD)
P

Gl (17.11)
(1V.11l) becomes

(1v.12)



in which the symbol g is defined in general in plasma physics as the
ratio of the particle pressure to the magnetic field pressure. In this

case it 1is

Py

(Iv.13)

= P

BL/ZU
(8] O

T

The criterion for the existence of the mirror instability given
(IV.12) was derived with the use of the double adiabatic in-
variants of MHD. The qualification (MHD) has accordingly been affixed
to the result, A treatment of this instability by the use of plasma
kinetic theory, which takes into account diabatic heating by parallel
neat flux, arrives at a similar result, but the factor of six in this

case is replaced by unity (e.g. Krall and Trivelpiece, 1973)

bv eq.

S . 1
= > L+3 (Kinetic Theory) (IV.14)

Dy O i

A sketch of mirror geometry in the magnetic field produced by an
obliquely propagating compressive mode wave is shown in Figure IV.2.
in the case of a slow mode wave, the particle pressure is strongest
where the magnetic pressure is weakest, namely, in the middle of the
magnetic bottles formed by the periodic constriction of each flux tube.
Ti the mirror instability criterion is met, the increase in the dista-
bilizing component of the pressure, p,, that attends an oblique slow
mode perturbation exceeds the increase in the restraining tensions in

the field and in p,, and the perturbation grows.
IV.2. The Kelvin-Helmholtz Instability

The pressure perturbations that arise in a fluid when it is forced
to flow over a wavy wall are such that if the wall were non-rigid the
amplitude of the wave in the wall would tend to grow. The example com-
monly given to illustrate the preceding statement is the waves that form
on the surface of open water on a windy day. There are two equivalent
ways of understanding the origin of the destabilizing perturbations in
this situation. In one we are to notice that the centrifgual force gen-
erated in the fluid as it moves along the wall in a serpentine motion to
conform to waves in the wall are such as to apply extra force on the
wall in the troughs and to diminish the force on the wall in the crests.
The troughs are thereby impelled to deepen and the crests to heighten.

An alternative (but, it should be emphasized, equivalent) way to
understand the phenomenon focuses on the change in the pressure in an
element of fluid next to the wall as it descends into a trough or sur-
mounts a crest of the wave. In the frame of reference of the wall,
these pressure changes are of course time stationary and are character-
istic of troughs and crests generally. The essential physical principle



Figure IV.2 Oblique slow mode wave showing the '"mirror"
geometry prerequisite for the mirror instability. The path of

a particle bouncing between two mirror points is indicated.

fluid,

is most clearly seen if we consider the case of an incompressible
The

that is one for which the density is constant in space and time.
distinguishing equation for an incompressible fluid is
.
(Iv.15)

v.v=20

which follows from the constant density condition and the continuity
In ordinary (non-magnetic) fluid dynamics in which
an incompressible fluid satisfies
ith the isometric

equation (I.22).
gravity and viscosity are ignored,
the following Bernoulli equation (from 1.89 and 92 w

polytropic index n = )

2
Q*\r“‘ + p o QXJ (I\/’.16)

Do =
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The right hand side of (IV.16) is a constant. This equation expresses
the well-known Venturi effect: when along a given streamline the ve-
locity of the fluid increases the pressure drops, and vice versa.

The Venturi effect explains why the pressure distribution in a
fluid moving along a wavy wall acts in the sense to amplify the wave.
As we shall see shortly, the perturbation caused by the wavy wall de-
creases exponentially away from the wall with a scale length equal to
where ) is the wave length of the wave in the wall. For many pur-
>s a problem involving a perturbation that decreases exponentially
witn a scale length 2 can be replaced by a problem with a constant per-
turbation extending over the same distance 2, but with zero perturbation
beyond this distance. Adopting for a moment the second description, one

‘ that the zero-order area through which the wave-affected part of
ld flows is given by some constant width in the direction paral-
the wave troughs and crests multiplied by a height equal to the
tial scale length A/2m. Consider thep how the perturbation in
a caused by the wavy wall effects the flow velocity of the fluid.
cady incompressible flow the total quantity of fluid passing over
tr h must be equal to the total quantity of fluid passing over a
crest In the same interval of time. But a trough increases the area
available to the flow and a crest decreases it. The velocity must then
change to compensate for the change in area to keep the total flow con-—
tinuous. Thus, the velocity over a trough must be less than the veloci-
ty over a crest. By the Venturi effect, the pressure is therefore in-
creased over a trough and decreased over a crest. As in the case of the
explanation in terms of the centrifugal force, the differential force on
the wall exerted by the pressure acts to amplify the wave. The actual
force that the fluid exerts on the wall is the pressure force. A demon-
stration of the equivalence between the explanation in terms of centri-
fug21l force and pressure force follows upon deriving an explicit expres-—
sion for the pressure perturbation and comparing it with the centrifugal
force associated with the fluid motion over the wavy wall.

is convenient for the purpose of fixing ideas with a concrete

e to begin a treatment of the Kelvin-Helmholtz instability with a
scussion of the flow of fluid past a wavy wall. 1In retrospect one can
see that the essential effect does not depend on the presence of a
i wall, but rather it depends only on the existence of a shear in
the flow velocity of the fluid. 1If there exists a frame of reference in
which one layer of the fluid is at rest (representing the wall) while an
adjacent layer is moving, any naturally occurring deviation from smooth-
ness in the interface between the two layers will grow under the result-
ing pressure perturbation. Manifestations of the instability therefore
should be nearly as plentiful as appearances of sheared flows. However
in many situations fluids exhibit some degree of elasticity and resist
the growth of the initial perturbation. Elastic resistance to the
Kelvin-Helmholtz instability results from surface tension in the case of
wind-over-water waves, stable stratification of the atmosphere in the

case of atmospheric gravity waves, and magnetic tension in the case of

surface MHD waves. In each of these instances the shear in velocity



must exceed some threshold value before the onset of unstable growth

occurs.

To illustrate the general nature of the treatment of the Kelvin-
Helmholtz instability in a MHD context, we consider here the problem of
a sheared flow between two incompressible, isotropic, inviscid MHD
fluids separated by a tangential discontinuity. Gravity will be ignored.
The example has appiication to the magnetopauses of planetary magneto-
spheres, the quasi-equatorial current sheet in the solar wind and the
myriad accidental tangential discontinuities lacing the solar wind.

On both sides of the discontinuity, the continuity equation for an
incompressible fluid given by (1V.15) applies as well as the Euler and
hyvdromagnetic equations, which we repeat here for convenience

N > >
dv . BxVxB v
n o—— 4 Y R s ickoldi et IV. 1l
° I ) 7 (1v.17)

Q

7 x (VxB) (1V.18)

P

As in the treatment of the MHD plane waves, the variable parameters, V,
p, and B, are decomposed into sero-order and perturbation parts.

- - -

v o=V 4+ 8V (IV.19)
(o]

P = P, + Op (1vV.20)

> > e

B = BO + 8B (1Iv.21)

Let (x,y,z) be a Cartesian coordinate system in which the z-axis is
normal to the plane of the discontinuity. Then VO and BO lie in the
(x,y) plane. Assume the perturbations have the form of propagating
plane waves along the surface of the discontinuity, but decay in strength
away from the discontinuity. This is the cannonical form of linearized
plane surface waves. That is the perturbation of any quantity Q has the
explicit space and time dependence given by

> >
i(w't-k, - -k z
Perturbation (Q) = ¢Q e Ll “t r) z (1v.22)

where 6Q is the (possibly complex) amplitude of the perturbation, «' 1is
the Doppler shifted frequency of the wave (that is the frequency in our
frame of reference), Et = kX§ + k_9v is the component of the propagation
vector that lies in the plane of the discontinuity, and k, is the recip-
rocal of the scale length for the exponential decay of the strength of
the perturbation in the direction normal to the surface of the disconti-
nuity. Thus, we must have k,>0 for z>0 and k<0 for z<0.

Substitution of the perturbation forms of the dependent variables
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with the plane surface wave assumption into the continuity, Euler and

hydromagnetic equations gives respectively

- =
K, o+ 8V = 0 (1V.23)
>
—> B y .
S D BEDIREL): 5B) ® .
wpdV - &, Sp = = (B-k) =— + (;9‘-05) K, (1V.24)
My r
R
8B = - (B_- 1K) &V (IV.25)

5
where w = ©' - V,.K is the frequency jin the plasma rest frame (cf. eq.
117.19), and the complex wave number K, is defined by

> A ~ A

K, T kx +ky ik z V.26

+ ple yy 'z (1v.26)
in which the + sign applies for z>0 and the - sign for 2z<0. By this de-
- . . oo Tepe
finiction of ¥+, we have arranged for kz to be everywhere positive. In the
. : o L x 7 - >
combinations V,-k and go.k, the subscript t on k is superfluous.

The special properties of the boundary waves are determined by the
applicable continuity relations. The total pressure is continuous
across a tangential discontinuity (eq. I11.66) and the displacement of
fluids in the z-direction must be continuous in order to avoid

the two
ceparation or interpenetration of the fluids. Let Py designate the total
pressure (i.e. Ppo=p + (BZ/ZUO)). Then the two continuity relaticns
can be expressed as
(el =0 (1v.27)
[[6z]1] = O (1v.28)
Now
5P = ¢ L % .68 /.29
OT—\P‘?" m o (1V.29)

> >
The quantities Sp and 6B can be eliminated in favor of ¢V through the
use of (IV.24 and 25) resulting in

-

- 2 2 7.2, pdv
= ( = . U 7

GPTKt [w (VA k)“] 5 (1IV.30)

- e e R
where V, = Boéﬁuop is the Alfven velocity. The scalar product of
(1V.30) with <4 together with (IV.23) show that

. 2

GPT , =0 (1v.31)

; ] N 2 . . .
Thus either &P, = 0 or ¥, = 0. The first option leads directly to the
usual relations for an intermediate mode MHD wave, as can be seen from
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eq. (IV.30), which in this case gives wz = (GA‘Q)Z . The second option
is specific to surface waves, and yields the important relation

k2 = 1 (1v.32)

This expresses the condition stated earlier that the decay length for
the strength of the perturbation away from the discontinuity (or wall)
70— .

i ke, e k;l = /27, where 2 is the wave length of the surface wave.

The two continuity relations (IV.27 and 28) will now be used to-
gether with the expression for the perturbation in the total pressure
(IV.30) to obtain the dispersion equation for the surface waves. The

- " . AT "
matheratical procedure has the following structure. The quantity <V in
) will be eliminated in favor of 8z to arrive at a relation that

(1v.,30
has the algebraic form

8Py = A Sz (1V.33)
where the quantity A will be determined below. Then the condition
[{pp!l = 0 gives [[AS6z]] = 0. But since 8z is also continuous it can be
factored out, resulting in

[1al] =0 (1V.34

Tquation (IV.34) with A made explicit is the dispersion equation.

1O
- DNa o 1
(Iv.30) by z and solve for &Py

To find the expression represented by A, scalar multiply equation

A
Sp = k_],;m_ 2 _ (T T 2 e 6\"__2_ RS
s ik [ \'VA k)] % (Tv.35)
V4
But
> oA Sz g > >
§Vez = oz o §§3-+ V * U8z = i(w'-V *k) Sz = iwdz (1V.36)
dt it o o
Thus
- 2 > >
A=+ plew - (VA'k) ] (1v.37)

The common factor kz has been dropped from the final expression since it
would cancel out in the continuity relation (IV.34).

1f we denote quantities that refer to the plasma above the disconti-
nuity (z>0 corresponding to the + sign) by the subscript 1 and quanti-
ties that refer to the plasma below the discontinuity by the subscript 2,
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the discontinuity relation (IV.34) becomes

2 > 22 2 2 a2
~ R _ 7 o = . = 3\
Vl[wl (\Al k7] + pz[wz (VA2 k) 7] 0 (1v.38)

This can be rewritten as a quadratic equation for the frequency o' in
the initially chosen frame of reference. This is the observed frequency
and it must be the same for both sides of the discontinuity. The solu-
tion of the quadratic equation for w' is

V. k+0.V. 'k
0. ‘K40 °
11 2'2 . 1 r )
ol = * 1o+ p,)[p, (ViK™ +
J v o ' IJ_ &
01t 0, (ol+ c2> 1 "2 Al
TV 6 (5T y.T18)E - \
2 (Vyo k)] .r,lf,z[(v1 xz) k]1°} (1V.39)

-> >
in which the subscripted zeros on Vy and V2 have been dropped.

It is evident that ' will have an imaginary part corresponding to
the functioning of the Kelvin-Helmholtz instability if the argument of
the radical is negative. It can be quickly verified from this equation
that the condition for the operation of the instability can be expressed

ir. terms of a threshold condition on the velocity shear AV = Vl—Vz,

namely

g}

2 1 > > 2
(AV k)™ > = C* +'* ) [(B]‘k) + (B k) ] (Kelvin-Helmholtz insta-

) : bility) (IV.40)

> -
in which B, and B, are the zero-order fields on the two sides of the

discontinuity.

In order_to make the left hand side of (IV.40) as large as possible
for a given AV choose k to be parallel (or antiparallel) to A¥. Then
it is apparent the value which AV must exceed in order for the insta-
bility to operate depends gn the size of components of By and B, paral-
lel (or anrlparallel) to AV, This is readily understood to be a con-
sequence ¢f the stretching bv the wave of that component of B (on either
side) that lies paralLel to k. ine stretching occurs because if there
is a component of B parallel to k, the field lines cut across the

roughs and crests of the wave and are stretched in length, according to
their obliquity relative to k, in proportion to the ratio that the area
of a wavy surface makes to a smooth one. Since the tension inherent in
a magnetic field resists any force acting to stretch the field, the ve-
locity shear is required to exceed a certain value given by (IV.40) in
grder to overcome this resistance. Note that if AV is perpendicular to
B on both sides of the discontinuity, the right hand side of (1IvV.40) is
zero for a wave propagating parallel to AV In this case the wave does
not stretch the field lines and the surface is unstable for arbitrarily
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small values of AV,

As a final observation concerning the properties of MHD surface
waves, consider the wavelength dependence of the instability. 1In the
expression for the threshold criterion (1V.40), the wave vector k multi-
plies all terms. The expression would be unaffected numerically there-
fore if k were replaced by the unit vector pointing in the propagation
direction, k. The threshold criterion is thereby seen to be independent
of the wavelengths of the surface wave. That is, if the surface is un-
stable for one wavelength, it is unstable for all wavelengths. On the
other hand, the dispersion equation (IV.39) shows that when the insta-
bility criterion is met, the imaginary part of the frequency is directly
1 Thus the growth rate of the instability is greatest

proportional to k.
However, we have treated only the linear

for small wavelength waves.
problem. The result concerning the growth rate therefore only implies
that the short wavelength waves reach their nonlinear form more quickly
then the long wavelength waves. The linear treatment can mnot predict
which wavelength waves will have the largest amplitude after they have

evolved into the nonlinear domain.
IV.3 The Magnetospheric Interchange Instability

The magnetospheric interchange instability is a particular type of
igh-Taylor instability in a MHD fluid. The Rayleigh-Taylor insta-
ity occurs whenever an adiabatic interchange of fluid parcels results
in a reduction of stored energy, whether the energy be stored as poten-
tial energy or as kinetic energy of compression.  The kinetic

energy associated with the interchange motion can then be supplied by
the release of stored energy, the motion becomes self-propelled, and the
initial arrangement of fluid parcels proves to be unstable.

<7

Tn the most commonly cited example of a Rayleigh-Taylor instability,
one incompressible fluid overlies another which has a smaller mass den-
sity, or more informally expressed, a heavy fluid overlies a light one.
Then an interchange of a parcel of the heavy fluid and an equal volume
of light fluid results in lowering their common center of gravity, there-
by releasing stored gravitational energy. Such interchanges therefore
will occur spontaneously, overturning the unstable configuration until
the light fluid completely overlies the heavy fluid. In contrast to the
initial state, the final state is stably stratified.

For this simple example it is a trivial matter to write down a

mathematical criterion which must be satisfied in order for the insta-
bility to occur
g » Vp <0 (unstable) (Iv.415

Tn (IV.41), ¢ is the force of gravity, but it could as well represent
any inertial force such as the centrifugal force. The combination of
gravitational and centrifugal forces, which is called the geopotential
force is used to describe the "effective' gravitational force in the



frame of reference corotating with a planet. Later in this subsection
we w1ll need to use the geopotentlal force and we will denote it by g .

Then g in (IV.41) is replaced by g*

The Rayleigh-Taylor instability manisfests itself in stellar and
planetary atmospheres as well, but here the compressibility of the fluid
(in this case a gas) must be taken into account. To guarantee stability,
it is not sufficient that a less dense gas overlie more dense gas since
in a vertical interchange of gas parcels, a descending parcel is compres-
sed adiabatically and becomes denser as it moves through increasing at-
mospheric pressure. Conversely, an ascending parcel expands adiabatical-
ly and becomes less dense as it moves through decreasing atmospheric
ssure.  Thus, instead of comparing mass densities at two different

pre
levele, it is necessary to compare the masses in volumes that increase
with height according te the adiabatic relation
1
T=oo (p )Y (IV.42)

! lows from eq. (I1.82) and the definition of a fluid parcel,
which entails a volume of fixed total mass and thus which obeys pV=const.
The pressure p in (IV.42) is meant to be the actual pressure of the at-
mcsphe e, To make this designation explicit, we have used the subscript
st, which denotes "structual'". TFor a given, fixed value of the para-
meter ¢, atmospheric parcels with volumes given by (IV.42) can be inter-

x“nooa veritically with no change in the volume of the surrounding gas.

hws no work in the form of compression attends such interchanges, and
only change in energy can result from a change in the gravitational
potential, It is now evident by direct analogy with (IV.41) the insta-~
bility criterion in this case is

1
SR
ni

the

2 .V (p V) <O (unstable) (1V.43)

b’
o+

....).
V is the mass of volume-equivalent fluid parcels. Again g
ed by g%, which represents the generalized inertial force.

n

in which 0
can be replac

2]

g0

It is convenient to cast (IV.43) in terms of more readily available
observables. To do this first note that
- 1/A
Al (1V.44)

J o= )
pstV ¢ Dst(pst’

and recall that the specific entropy s is proportional to Qn(p/p[). In
terms of sg4, the instability criterion becomes (upon multiplying (IV.43)

by - Y/pStV)

¢+ Vs >0 (unstable) (IV.44)

st
Equation (IV.44) states that an atmosphere is unstable if the specific
entropy decreases with height. Of course, the specific entropy is also
not a readily available observable, but equation (IV.44) reveals that
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the condition of isentropy (sSt = const.) divides stable from unstable
atmospheres. This suggests that the instability criterion should be ex-
pressed by reference to a convenient variable in an adiabatically stra-
tified atmosphere. Since the variation of pressure with height in an
atmosphere changes in time much less than the vertical variation of
temperature does, the vertical pressure profile is usually regarded as
fixed and known. Then the family of temperature profiles can be used for
reference purposes that satisfys the adiabatic relation with respect to
the given structural pressure profile (see eq's I.62 and 82)

Tad(pst) o= const, (IV.45)
where the constant on the right hand side is the family parameter. To
arrive at an instability criterion in terms of a comparison between the
vertical profiles of the structural temperature and the adiabatic tem-
perature given by (IV.45), eliminate pgy on the right hand side of
(IV.44) by use of the ideal gas law (I.62) to find

-1 1

s Ie
. = ) = 7.4
; c‘ ] p_.) Y c Tq (T i) (1V. 6)

in which the second equality follows from (IV.45), and c, and c, are
constants. Equation (IV.46) is substituted into (IV.43) and evaluated
with Td initiallized to Tgqp. Then the instability criterion becomes

(&8

e . (VT - VT 4) > 0 (unstable) (1V.47)
ST
tmospheric application, instead of referencing directions of change
to g, it is usual to use height, z. Then noting that § = - g7, we may
write (IV.47) in the most common form for the instability criterion

QYW

det dTad
< .
i, P (unstable)

(Iv.48)

Since temperature normally decreases with height, equation (IV.48)
states that an atmosphere is unstable if the temperature decreases in it
more rapidly with height than in an adiabatic atmosphere.

With the incompressible and compressible forms of the gravitational
Rayleigh~Taylor instability treated as preliminary examples, we turn
next to consider the algebraically somewhat more complicated case of the
magnetospheric interchange instability. We are here concerned with a
planetary magnetosphere or portion of magnetosphere for which for mathe-
matical convenience the following idealizations and approximations may
be made. The magnetic field is a pure dipole field. The dipole axis is
parallel to the rotation axis of the planet. The kinetic energy density
of the plasma in the magnetosphere is small compared to the magnetic
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energy density. This last condition is to ensure that the magnetic
field retains its dipole geometry, that is that the distortions caused
by magnetospheric currents may be ignored. As noted by Gold (1959),
the magnetic field can nevertheless undergo interchange motions as a
result of forces generated by the plasma. This type of motion merely
involves the interchange of entire magnetic flux tubes, all of which
enclose the same quantity of magnetic flux. Such interchange motions
can cccur without causing any change in the magnetic field configura-
tion, and thus entail no change in magnetic energy. It is clear that
ions take the form of circulations, since each flux tube

that moves to £ill the place of another must have its place filled in
fu e of an interchange circulation pattern is shown in

interchange mot
£

Ti should be noted explicitly that the notion of interchanging
applies to a plasma for which the hydromagnetic approxima-
Then by the freezing law, the flux tube plays the role
It retains a constant quantity of plasma within It
moves in interchanging circulations. As we shall see, an impor-
1ffarence between this and the previous compressible case we
studied is that the volume of a flux tube is fixed by the quantity of
magnetic flux it contains and its position in the magnetosphere. By
R" assumption, the volume of the flux tube is independent of

Tf an interchange motion such as the one depicted in the figure re-
cults in reducing the amount of energy stored in the plasma which is
erclosed by the participating flux tubes, it is reasonable to assume
that rhe motion will occur spontaneously, driven by the released energy.
Bv analogy with the previous examples it is easy to anticipate the
ceperal structure that the resulting instability criterion will take.

Tf the interchange affected only the geopotential energy, as previously,
the criterion would have the general form given by eq. (IV.43) with §
replaced by 2% and V taken to be the volume of equi-flux flux tubes.
(The apparent inconsistency between the local nature of the equation

and the global nature of V is resolved by specifying the point of ap-
plication to be the equatorial plane.) However, in this case the inter-
change can also result in a net change in the kinetic energy of compres-
sion. This was not true in the previous example because there each
interchange involved equal and opposite changes in the volumes of the
interchanging parcels as they passed in opposite directions through the
jdentical pressure variation in the surrounding atmosphere. Thus, the
work done on a descending parcel was identically cancelled by the work
done by an ascending parcel, and there was no net change in energy of
compression in the system of interchanging gas parcels. 1In the present
situation, the volume is governed by the geometry of the dipole field.
The pressure within each flux tube is arbitrary, in principle, as long
as it satisfies the low B requirement. Thus, while the changes in the
volumes of interchanging flux tubes are equal and opposite, the pres-
sure attending the volume changes can be different for rising and sink-

ing flux tubes, or, to switch to magnetospheric parlance, for outward
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Figure I1IV.3 Sketch of interchange motion in the equatorial
plane of a dipolar magnetosphere. The interchange in-
volves two radially moving elements labeled 1 and 2. The
radial displacements are indicated by solid arrows. The
positions vacated by elements 1 and 2 are filled by azi-
muthal motions of the elements which formerly occupied
the positions into which 1 and 2 moved, as indicated by
the dashed arrows.

and inward moving flux tubes. Sindé:mOving flux tubes absorb energy of
compression and outward moving flux tubes release energy of compression,
it is evident that a magnetosphere that is radially stratified such

that the compressed energy per unit magnetic flux decreases outward is
ble to interchange motions, as far as the criterion based on
stored energy of compression is concerned (Gold, 1959). That is, in
this situation more energy will be released by outward moving flux

tubes than is absorbed by the ones moving inward to replace them.

A criterion for the interchange instability based on the energy
principle has been given by Sonnerup and Laird (1963) in which both geo-
potential and compressional energies are included (see also Melrose
1967). The approach to be adopted here is based on the method used in
discussions of the flute instability in plasma physics. It serves
thereby to demonstrate the equivalence between the flute instability of
plasma physics and the MHD interchange instability.

Figure 1V.3 represents two situations in the equatorial plane of
a magnetosphere. The equilibrium state is assumed to be static and to
consist of radially stratified flux shells, that is, there are no mo-
tions initially and no variations in plasma parameters in the azimuthal
direction. The radial profile of plasma parameters is assumed to be
known and, as before, will be designated by a subscript st. The equi-
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librium is maintained by azimuthally flowing electrical currents that

provide the ponderomotive force to balance the pressure gradient and

geopotential forces. The requisite current is found by solving the
-3

momentum balance equation for J,

e (et (1IV.49)

-
subscript 1 on J merely makes explicit what is implicit

in which the
in the right hand side of the equation, that the ponderomotive current
flows perpendicular to the magnetic field, and has no parallel compo-
nent. The pressure p in (IV.49) is taken to be a scalar to simplify

the discussion.
After the interchange has occurred the radial profile of plasma
parameters becomes locally adiabatic, and will be designated by a sub-
seript ad. The current required to provide force balance as given by
(TV.42) will now be discontinuous across the azimuthal interfaces be-
tween the interchanged and the ambient plasmas. In the discussion of
the flute instability, the discontinuity in current builds up electric
space charges on the two azimuthal walls of a radially displaced inter-
change element. The space charges will have opposite algebraic signs
on the two sides of the element by the symmetry of the problem. An
azimuthal electric fields is thereby generated. In thg presence of the
magnetic field the electric field will produce an E x B drift which is
either radially out or in., If E x § is in the direction of the initial
isplacement that gave rise to the E field, the initial stratification
s unstable, and all such perturbations will continue to grow. If

2]
ag

.
b
o
[¢]

o

is in the direction opposite to the initial displacement, the
lasma is stably stratified.

i
™
o)

The only change to the above discussion that is called for because
of the magnetospheric setting of the problem is the replacement of
space charge build up by parallel currents. The space charge is dis-
charged through the conducting ionosphere by flowing down the magnetic
field lines. However, in this process also an electric field is gener-
ated across the flux tube as a result of the discharge current crossing
the finite electrical resistance of the ionosphere. This electric
field is in the same direction as the field that the space charge would

have created. Thus, the instability criterion is the same in both

cases.

In the absence of space charge build up, the divergence of the to-

ral current is zero. The equation for the parallel current is then

>
Jn . _ V,'} mr vl~[§§,x (Vp—Qg*)] (1IV.50)

‘ B

o>

Q2

in which the z direction is defined by B = Bz. The subscript ! on the
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del operator denotes a two dimensional divergence in the equatorial
plane. If we adopt a cylindrical polar coordinate system (r,b,z), the
two gimensional divergence of the cross product of any two vectors G
and H can be written explicitly as

7 (G = H-VxC - G-VxH + G 5 C 8H¢ H i + H 8G®
S x A ¢ 3z r oz ¢ 9z v 23z
(1IV.51)

By use of (IV.51), equation (IV.50) can be evaluated with the aid
of the following conditions which are aEpropriate to the equatorial
plane and our initial assumptions: v x B = 0, and therefore 0B_/9z
= 0B,/dr, B = B,, 3B/0r = - 3B/r (dipole field), B, = By = gi = 0,

=T ()P and Vx g% = 0 (¢ is given by the gradient of a'potential).
reduces after several intermediate steps toO

S
%

(1V.52)

z B rod

|o

- 3
3p + rpg”)

B

Thus as stated above, an azimuthal contrast in p or ©O brought about by
a radial interchange motion gives rise to field-aligned currents. It
should perhaps be noted that equation (1v.52) for J, is general (for an
isotropic plasma in the equatorial plane of a rotation-aligned dipole
field) and does not depend on how the azimuthal variations in p and p

are created.

The instability criterion can now be deduced from (IV.52). By
our definition of the z-direction (B = BZ) and the fact that (r,d,2)
forms a right handed coordinate system, we see that a positive E¢ pro-
duces an outward B x B drift. Thus, the magnetospheric stratification
ic unstable if an outward adiabatic interchange displacement produces
e positive Ey. The sign of E,; across the interchange element will be
the same as the sign of 0J,/0z on the clockwise (smaller $) side of the
element, since a positive 3J,/dz would correspond to a build up of
positive charge in the absence of a field aligned current. From this
we concluded that the stratification is unstable if 3p + rpg*) is
greater on the adiabatic side of the azimuthal interface created by an
outward displacement than it is on the ambient side. Mathematically

the criterion can be expressed by

~

d . d .
-~ 0 < .
g 3p + e o (3p + g )4 (unstable)

(1v.53)

Tn the case of an isotropic plasma that uniformly fills the flux tubes,

the adiabatic gradients can be given explicitly, since the volume of a

dipolar flux tube is to a good approximation proportional to r4, 1In
g v/

an  adiabatic displacement pV\ = constant and pV = constant (where V is

the volume of the flux tube). The adiabatic gradient therefore can be

written as



89

* KR N
4 * o g Bl p XPG e drg” (IV.54)
ar (3p + g™, e -

If the radial profiles of the structural pressure and density are ex-
pressed also as power-law variations

then the instability criterion becomes

3(A+4y)p + (u+4)rpg* < 0 (unstable) (TV.56)

{Since P,q And 0,4 are initiallized to the values of Pgt and p_, at
the same value of r, the subscripts are unnecessary in (IV.54 and 56).
The term p 9¥8%/dr ig common to both sides of (IV.53), and therefore
cancels out in IV.56). It remains only to give an explicit expression
for g*. In the equatorial plane g*, the combination of the gravita-

&

tional and centrifugal accelerations is given by

R2

0* B P (2 £
=) g 2 + Jpr (IV.J?}

r

where g is the gravitational acceleration at the surface of the planet,
R, is the radius of the planet and Q_ is the angular velocity associ-
ated with the rotation of the planet,

The criterion (IV.56) can be modified readily to make it appli-
cable to situations in which the plasma does not fill the flux tube
completely, such as in the case of anisotropic pressure or when the
plasma is confined to the equatorial plane by the centrifugal force.
The plasma formation in Jupiter's magnetosphere which is composed of
matter originating on Io exhibits equatorial confinement. In this case
the volume occupied by the plasma varies with distance more nearly as
r3. The factor four that appears in (IV.56) should then be replaced
by the factor three. 1In the Jovian case there is also a background of
energetic particles for which the factor four is appropriate. The
terms in (IV.56) must be evaluated by combining both populations to
determine whether or not the stratification of the Jovian magnetosphere

is stable,
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