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[1] The heating of the solar atmosphere by strongly damped Alfvén waves that produce
heating through plasma‐neutral collisions is studied by solving analytically a self‐
consistent one‐dimensional model of the plasma‐neutral‐electromagnetic system. We
compute the vertical profile of the wave spectrum and power by a novel method, which
includes the damping effect neglected in previous treatments, and find that the damping
depends on the magnetic field strength. The damping is extremely strong for weaker
magnetic field and less strong for strong field. Under either condition, the high‐frequency
portion of the source power spectrum is strongly damped at the lower altitudes, depositing
heat there, whereas the lower‐frequency perturbations are nearly undamped and can be
observed in the corona and above when the field is strong. The chromosphere behaves like a
low‐pass filter. The magnetic field strength determines the upper cutoff frequency. As a
result, the power and spectrum of the waves observed above the corona is weak for
regions of weaker background magnetic field and only a fraction of those at the
photosphere for regions of strong magnetic field. Contrary to what was supposed in some
earlier Alfvén wave damping models, the spectrum observed above the chromosphere in
general does not represent the energy input. We show, using the parameters of a semi‐
empirical model for quiet‐Sun conditions, that this mechanism, without invoking any
anomalous processes, can generate sufficient heat to account for the radiative losses in the
atmosphere, with most of the heat deposited as required at lower altitudes.
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1. Introduction

[2] The thermal structure of the atmosphere of the Sun and
other solar‐type stars has been one of the outstanding pro-
blems in solar physics and astrophysics for decades [e.g.,
Van de Hulst, 1953; Parker, 1965, 1991; Athay, 1976;
Withbroe and Noyes, 1977; Böhm‐Vitense, 1984; Hollweg,
1985, 1986; Narain and Ulmschneider, 1990, 1996; Priest,
2000; Ulmschneider, 2001; Aschwanden, 2005; Fossum
and Carlsson, 2005; Cranmer et al., 2007]. Above the sur-
face of the star, powerful heating processes must be occur-
ring to supply the energy lost by radiation and at the same
time to raise the temperature by a large factor; in the case of
the Sun (see Figure 1a), the temperature increases from
∼6000 degrees in the chromosphere (not much different from
that in the photosphere) to ∼2 million degrees in the corona.
Associated with the heating, massive ionization of the neu-
tral atmosphere of a solar‐type star takes place: the corona is

nearly fully ionized, while below the transition region in the
chromosphere the gases are weakly ionized at lower altitude
and partially ionized at higher altitude (see Figure 1a).
[3] Although this heating of the solar atmosphere is often

referred to by the single generic name of coronal heating,
two distinct aspects of the problem with rather different
physical requirements can be recognized. The first is to
explain how the high temperatures are reached; the second is
to account for the energy supply. In the corona, the primary
question is what process can raise the temperature to values
that exceed by far anything expected from simple thermo-
dynamic considerations; the amount of energy involved,
given the low mass densities, however, is relatively small. In
the chromosphere, by contrast, the temperatures values are
not particularly out of the ordinary, but the main question is
to identify the energy supply which, in order to balance the
radiative losses, is here required to be more than an order of
magnitude larger than in the corona.
[4] In this paper we concentrate on the second aspect. As

a starting point, we focus on quiet conditions and leave more
complicated situations for future studies. For the quiet Sun,
most of the energy is lost in the lower and middle chro-
mosphere and the energy losses in all higher regions
(including the corona) are smaller by an order of magnitude
or more. The principal challenge, therefore, of the solar
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atmosphere heating problem is to explain the heating
mechanisms in the lower and middle chromosphere.
[5] In the optically thin region above the photosphere, the

temperature profile is maintained locally by the heating
process (i.e., conversion into heat of other forms of energy)
and the radiative losses as well as remotely by the con-
ductive heat flux and the advective energy transfer. If the
temperature gradient is small, heat conduction and energy
advection are relatively unimportant, and a local heating
process has to balance the energy loss by radiation. Table 1,
adapted from Withbroe and Noyes [1977], summarizes the
empirical estimates of the energy loss rates per unit area (i.e.,
integrated over altitude) for various regions. The local heating
rate required to balance the radiation loss is estimated to be
10−1 erg cm−3 s−1 in the lower and 10−2 erg cm−3 s−1 in the

higher chromosphere [Vernazza et al., 1981]. Integrated over
2000 km altitude range where the temperature varies rela-
tively slowly, this gives a total power of 106∼7 erg cm−2 s−1,
depending on solar activity and specific location on the Sun,
in general agreement with the results of Withbroe and Noyes
[1977]. By comparison (see Table 1), the power input to the
corona is smaller by roughly an order of magnitude, and the
power required to maintain the solar wind (a form of advec-
tive energy transfer) is smaller by one more order of magni-
tude, representing only a small fraction of the power going
into the radiative loss.
[6] Although many models and mechanisms have been

proposed [see Hollweg, 1985; Narain and Ulmschneider,
1990, 1996; Aschwanden, 2005; Cranmer et al., 2007],
their heat conversion efficiencies are generally inadequate to
supply the radiative heat loss from the observed available
power. Furthermore, most proposed heating mechanisms are
efficient only at the higher altitudes, i.e., above 800 km,
whereas, as noted above, heat energy is lost by radiation
predominantly at the lower altitudes. It is commonly
assumed that the power must be supplied from below the
photosphere, probably as upward flux of energy in some
form of low frequency waves or turbulence. The upper limit
on the kinetic energy associated with the thermal perturba-
tions is rtVth

2 /2 ∼ 105 erg/cm3, where rt (∼2.8 × 10−7 g/cm3)
and Vth (∼10 km/s), are the total mass density and the mean
thermal speed, respectively, of the fluid at the surface of the
photosphere. According to a semi‐empirical model [Avrett
and Loeser, 2008], the average perturbation velocity is
about 1.7 km/s, well below Vth; this corresponds to a kinetic
energy density of 4 × 103 erg/cm3 for motion in one
dimension. If the perturbations are isotropic, the energy flux
density (energy density multiplied by the propagation
velocity) upward from the photosphere is 4 × 109 erg cm−2 s−1

for acoustic waves (vertical oscillation). For Alfvén waves
(horizontal oscillations in two dimensions), if propagating at
the total Alfvén speed as discussed later, the energy flux is 4 ×
108 erg cm−2 s−1 for a background magnetic field of 1 Gauss
and 4 × 109 erg cm−2 s−1 for 10 Gauss. The energy flux for
Alfvén waves is correspondingly greater (for a given ampli-
tude of the velocity perturbation) in regions of stronger
magnetic fields.
[7] Evidently, either wave mode can in principle provide

an energy supply adequate for heating to sustain the radia-
tion [Erdélyi and Fedun, 2007], not to mention the small
amount needed to launch the solar wind. The problem is
thus not the source of the energy as such but the question,
what mechanism can efficiently convert the wave energy
into thermal energy in the atmosphere, while maintaining
the observational constraints that the heating must be
stronger in the lower chromosphere [e.g., Aschwanden,
2005] where a larger fraction of the radiation is emitted,
and that the wave power leaking into the corona must not
exceed the wave power observed there, which is only of the
order of 106 erg cm−2 s−1 [Narain and Ulmschneider, 1990].
[8] Wave heating mechanisms have been proposed [see

Narain and Ulmschneider, 1990], in which heating can be
driven by basically two types of flow perturbations: (com-
pressional) longitudinal and (incompressible) transverse or
torsional. Acoustic modes, often investigated separately, are
a limiting case of compressional magnetohydrodynamic
modes with negligible magnetic field. Although the power

Figure 1. (a) Temperature (blue line), total hydrogen num-
ber density (green line) and electron number density (red
line) [Avrett and Loeser, 2008]. (b) Electron collision fre-
quency ne = nei + nen (red line), ion‐neutral collision fre-
quency nin (blue line), neutral‐ion collision frequency nni
(green line), and ratio of collision frequencies to gyrofre-
quencies, parameter � = neni/WeWi for B = 50G (black line),
all calculated from the formulas of De Pontieu et al. [2001]
and the parameters of Avrett and Loeser [2008]. The elec-
tron gyrofrequency We for B = 50G is indicated as a solid red
dot on the x axis.
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available for incompressible modes is probably much
greater (by a factor ∼30) than that available for compres-
sional modes [Ulmschneider, 2001; Jess et al., 2009], the
latter (in particular the acoustic modes) have nonetheless
been mostly favored as heating mechanisms by theorists,
perhaps because as they propagate upward the perturbation
amplitude can easily increase with altitude (for a fixed
energy flux), leading to wave steepening and the consequent
formation of shocks which are efficient converters of flow
kinetic energy into thermal energy; note, however, that this
shock heating may be effective only at the higher altitudes
where wave steepening occurs, not in the lower chromo-
sphere where most heating is required.
[9] Except perhaps for limited effects of turbulence, it is

difficult to obtain significant heating from incompressible
modes in the acoustic (negligible‐magnetic field) limit, in
which, furthermore, horizontal (transverse or torsional) flow
perturbations do not propagate from low to higher altitude.
Transverse incompressible modes become important when
there is a magnetic field, particularly one that has a vertical
component; perturbations propagating upward from the
photosphere can be described by Alfvén waves, their
amplitude increasing with height [e.g., Banerjee et al.,
2009]. The transverse modes may, through various damp-
ing mechanisms, play an important role in heating the
corona where the magnetic field is strong and the medium
nearly fully ionized [e.g., Parker, 1965; Hollweg and
Isenberg, 2002]. In the chromosphere, however, on the
basis of previous theories, the observed chromospheric
Alfvén waves may provide heating around 105 erg cm−2 s−1

[De Pontieu et al., 2007], comparable to the power into the
solar wind but an order or more of magnitude smaller than
the radiation loss from the chromosphere [Withbroe and
Noyes, 1977]. This discrepancy may indicate that the
mechanism of heating by Alfvén waves is deficient, or it
may mean that previously applied theories are flawed.
[10] Most recently, mechanisms that include the coupling

between the vertical and horizontal perturbations have been

proposed [e.g., Van Doorsselaere et al., 2008; Terradas
et al., 2010, Verth et al., 2010; Soler et al., 2011;
Vasheghani Farahani et al., 2011]. Most of these theories
have focused on coronal applications and, to our knowledge,
have not been able to predict the required chromospheric
heating rate.
[11] In this study we seek to explain chromospheric

heating by identifying a mechanism that can efficiently
convert available wave power into heat at the required
places and in the required amounts. We focus on properties
of the chromosphere as a partially ionized medium, invok-
ing the counterpart of transverse Alfvén waves in such a
medium. We describe qualitatively the essential physical
ideas of the proposed mechanism in section 2, develop a
simple analytical model in section 3, and apply its results to
the solar chromosphere in section 4, with discussion in
section 5 and conclusions in section 6.

2. The Mechanism: Physical Description

2.1. Overview and Assumptions

[12] We propose that solar atmospheric heating is driven
by transverse or torsional, i.e., horizontal, oscillatory bulk
flows of plasma below the photosphere and takes place
through the collisions between the plasma and the neutral
gas. The essence of the process is that, because the chro-
mosphere is only partially (and over much of its volume
very weakly) ionized, the plasma and the neutral atmosphere
can be treated as two distinct fluids, subject to different
forces and therefore possibly moving differently; the sys-
tematic difference in bulk velocity may be small but, if
maintained permanently through imposed oscillations, may
produce considerable energy dissipation (heating) by inter-
species collisions of the two media. Such a process has been
proposed previously and investigated under the rubric of
damping Alfvén wave models [Piddington, 1956,
Osterbrock, 1961; Haerendel, 1992; De Pontieu et al.,
2001; Goodman, 2004; Khodachenko et al., 2004; Leake
et al., 2005]. Early models treated the system as a single
fluid and the Alfvén waves as weakly damped, with the
wave amplitude and spectrum not changing significantly
with altitude (essentially the same assumption as the well‐
known Born approximation of scattering theory). The
problem with this approach is that the energy appearing as
heat is the energy taken out of the wave by damping; hence
weak damping means weak heating, and it is no surprise that
the heating rates derived from these earlier models are
insufficient to heat the solar atmosphere. De Pontieu et al.
[2001] and Leake et al. [2005] did note that the damping
may be heavy at high frequencies; however, De Pontieu et
al.’s treatment was still based on the Born approximation
and hence not applicable to strongly damped waves, while
Leake et al. did not calculate a heating rate.
[13] The critical issue is thus how to treat a system with

strong damping. The new aspects in the present study are:
(a) we allow from the outset for the possibility of strong
damping or even complete absorption of waves, depending
on wave frequency and background magnetic field strength;
(b) we calculate the heating rate directly and from it deter-
mine self‐consistently the altitude variation of wave am-
plitudes, by a simple general method which does not require
detailed solution of wave equations in an inhomogeneous

Table 1. Chromospheric and Coronal Energy Lossesa

Parameter Quiet Sun Coronal Hole Active Region

Transition layer pressure
(dyn cm−2)

2 × 10−1 7 × 10−2 2

Coronal temperature
(K, at r ≈1.1R�)

1.1 to 1.6 × 106 106 2.5 × 106

Coronal Energy Losses per Unit Area (erg cm−2 sec−1)
Conduction flux Fc 2 × 105 6 × 104 105 to 107

Radiative flux Fr 105 104 5 × 106

Solar wind flux Fw ]5 × 104 7 × 105 (<105)
Total corona loss

Fc +Fr +Fw
3 × 105 8 × 105 107

Chromospheric Radiative Losses per Unit Area (erg cm−2 sec−1)b

Lower chromosphere 2 × 106 2 × 106 ^107

Middle chromosphere 2 × 106 2 × 106 107

Upper chromosphere 3 × 105 3 × 105 2 × 106

Total chromospheric loss 4 × 106 4 × 106 2 × 107

Solar wind mass loss
(g cm−2 sec−1)

]2 × 10−11 2 × 10−10 (<4 × 10−11)

aFrom Withbroe and Noyes [1977] (reproduced with permission of
Annual Review of Astronomy and Astrophysics; permission conveyed
through Copyright Clearance Center, Inc.).

bBased on estimates for the quiet Sun by Athay [1976].
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medium; (c) we assume a broad frequency spectrum of
waves at the source and exploit the increased heating effi-
ciency at higher frequencies and as a function of the back-
ground magnetic field. As a result, we predict (for the first
time, to our knowledge) a vertical profile of heating in the
chromosphere that is concentrated toward low altitudes, as
required by the observations, and a heating rate (computed
without invoking any “anomalous” process) that is sufficient
to account for the observed radiative losses, given a rea-
sonable input wave power from the photosphere.

2.2. The Alfvén Wave in a Partially Ionized Medium

[14] It may be illuminating, before plunging into the
equations, to consider a qualitative picture of how an Alfvén
wave propagates in a fluid consisting of plasma and
neutrals. Figure 2 illustrates the process in a simple
locally 1‐dimensional stratified solar atmosphere with a
vertical magnetic field. We consider purely horizontal
bulk motions, so gravity (which acts on all the particles)
may be ignored. Electromagnetic forces act only on the
plasma, not on the neutrals. Plasma and neutrals interact
only through collisions; neutrals are affected by the
plasma on the time scale 1/nni, the reciprocal of the
neutral‐ion collision frequency.
[15] Now impose at the lower boundary a horizontal flow

of both plasma and neutrals, as a very short small step
increase at time t = 0+. The neutrals above the boundary
are initially unaffected (at least insofar as viscosity can be
neglected) and remain at rest. The moving plasma, however,
because the magnetic field is frozen to it, immediately cre-
ates a magnetic field line kink at the boundary, which exerts
a tension force on the plasma above and makes it flow,
creating another kink higher up, and so on. The net result is
a magnetic perturbation front propagating upward along the
magnetic field at the Alfvén speed, with the plasma behind
the front flowing horizontally. As long as the elapsed time
since t = 0 is short compared to 1/nin, where 1/nin is the ion‐
neutral collision period, the plasma is essentially unaffected
by the neutrals and the Alfvén speed, VA = B/(m0ri)

1/2, is
that derived from the magnitude B of the magnetic field and

from the mass density ri of the plasma only. The velocity
difference between the plasma and the neutrals, however,
leads to momentum transfer by collisions between the two
species which accelerate the neutrals, increasing their flow
speed from zero at t = 0 up to almost the same speed as the
plasma after an elapsed time of order 1/nni. The collisions
tend also to slow down the plasma, but its original speed is
maintained all this time by the continued imposed flow at
the lower boundary, through the tension force of a magnetic
field line kink propagating upward as before but now, in the
time interval from approximately 1/nin to well after 1/nni, at
the (much slower) Alfvén speed derived from the total mass
density rt of the entire medium (plasma plus neutrals). The
horizontal velocity difference between neutral and plasma
flow decreases steadily at exponential time scale 1/nni, until
eventually, as the elapsed time goes to infinity, the plasma
and neutrals reach the final asymptotic state when the two
species move at a common speed, equal to that imposed at
the lower boundary.
[16] This sequence, depicted in Figure 2, goes from an

initial state of rest, through a transient phase of plasma‐
neutral flow difference, to a final state of equal plasma‐
neutral flow, all a consequence of an Alfvén wave launched
by imposing a small velocity step at the boundary. A small
step function can be decomposed into a spectrum of plane
waves, which (since Alfvén waves are nondispersive)
propagate all at the same speed, hence the shape of the
initial perturbation does not change. Now any time profile of
perturbations at the lower boundary can be built up as a
series of such small steps, including oscillations (for which
the true asymptotic steady state of no flow difference is
never reached). If the perturbations continue without end but
always vary more slowly than the neutral‐plasma collision
time, the system remains in a slowly varying quasi‐steady
state, with a small but nonzero velocity difference between
plasma and neutrals and consequent heating by collisions.
The focus of our mathematical development is on this
regime.
[17] The above 1‐dimensional description is highly sim-

plified. In general, there will also be compressible modes

Figure 2. Electromagnetic coupling in a partially ionized fluid. Red dots indicate ions and open circles
indicate neutrals. Sketch of plasma and neutral motion in a stratified one‐dimensional situation with a
vertical magnetic field, after a horizontal flow of plasma and neutrals has been imposed below the lower
boundary, starting at t = 0. With its vertical extent taken as L = VATA � VA/nni, the figure represents only
a localized small segment of the entire system.

SONG AND VASYLIŪNAS: SOLAR ATMOSPHERE HEATING BY ALFVÉN WAVES A09104A09104

4 of 17



generated by horizontal nonuniformities, as well as by a
horizontally propagating component when the magnetic
field is at an angle to the vertical.
[18] Conventional description of heating by damping of

Alfvén waves, in contrast, has treated the plasma and neu-
trals as a single fluid in which the Alfvén waves propagate,
with dissipation arising by Ohmic or Joule heating within
the medium. This over‐simplified description masks the
physical processes that take place in the system and may be
conceptually misleading. Contrary to the common assump-
tion of a purely Ohmic or Joule heating, Vasyliūnas and
Song [2005] have pointed out that the dissipative heating
in a collisional partially ionized flow contains two con-
tributions: the frictional heating, by ion‐neutral collisions
from the relative flow, and the Ohmic or Joule heating
proper, by electron collisions from the current. In both
mechanisms, the heating results ultimately from the
velocity difference between the plasma and neutrals, hence
more heat is produced when the velocity difference is
greater. For oscillatory perturbations, the velocity differ-
ence increases with increasing frequency; higher frequency
perturbations thus produce more heat (and also are subject
to heavier damping) than lower frequency ones. In addi-
tion, since the true Ohmic heating results from electron
collisions, less heat is produced in strong magnetic fields,
in which electron gyromotion is more dominant relative to
collision effects.

3. The Model: Analytic Treatment of a Stratified
Atmosphere

3.1. Basic Equations and Approximations

[19] We now treat analytically a system consisting of
plasma, neutral medium, and electromagnetic fields, geo-
metrically simplified but self‐consistent in all three con-
stituents. The momentum equations for the electrons, ions,
and neutrals can be combined and rewritten [Song et al.,
2005, 2009; Vasyliūnas and Song, 2005] as the general-
ized Ohm’s law, the plasma momentum equation and the
neutral momentum equation, the leading terms of which
are:

0 ¼ Nee Eþ V� Bð Þ � j� B� me

e
�ei þ �enð Þj; ð1Þ

�i
@V
@t

¼ j� B� �i�in V� Uð Þ; ð2Þ

and

�n
@U

@t
¼ �n�ni V� Uð Þ; ð3Þ

where e, rh, j, V, U, E, B, Ne, and nhx, are the elementary
electric charge, the mass density of species h, the electric
current, the bulk velocities of the plasma and neutrals, the
electric and the magnetic fields, electron concentration
(number density), and the collision frequency between
particles of species h and x, respectively. Subscripts i, e,
and n denote ions, electrons, and neutrals, all the different
ions having been lumped together into one ion species and
likewise all the different neutrals into one neutral species,

with composition taken into account only when determining
the mean mass density rh. The set of equations is completed
by Ampère’s and Faraday’s laws

�0j ¼ r� B;
@B
@t

¼ �r� E: ð4Þ

[20] Note that nni (neutral‐ion collision frequency) and nin
(ion‐neutral collision frequency) are different quantities,
related by momentum conservation in collisions which
implies rnnni = rinin. To evaluate the collision frequency, we
use the formulas given byDe Pontieu et al. [2001], assuming
that ions are protons and neutrals are hydrogen, and that the
ions, electrons, and neutrals are in thermal equilibrium, nin =
7.4 × 10−11 NnT

1/2, nni = 7.4 × 10−11 NeT
1/2, nen = 1.95 ×

10−10 NnT
1/2, and nei = 3.76NeT

−3/2 ln L, where Nn and Ne

are the number densities of the neutrals and the electrons,
respectively, in cm−3; the temperature T is in °K, and lnL is
the Coulomb logarithm. The collision frequencies are shown
in Figure 1b. (At the present level of model development,
using collision frequencies from different generally accepted
references would not produce appreciable differences in the
result).
[21] It is convenient to introduce also the total mass

density rt = rn + ri = rn (1 + a) where a = ri/rn; the ion-
ization fraction Ne/(Ne + Nn) = ri/rt = a/(1 + a). We have
assumed that minin � menen, that the ions are singly
charged, and that charge quasi‐neutrality holds in the
plasma, or Ne = Ni. Since we consider horizontal flows only,
the gravitational acceleration has been omitted. For sim-
plicity, we have neglected all other forces, in particular all
the kinetic‐tensor terms (flow and pressure gradients).
[22] The three terms in (1) after the electric field term are

the advective (V × B) term, the Hall term, and the resistive
term, respectively. The primary use of (1) is in combination
with Faraday’s law (4) to obtain the time evolution of the
magnetic field from D × E. An order‐of‐magnitude analysis
of (1), using (2) and (3) to evaluate j × B, gives the fol-
lowing ratios between the terms, for variations at frequency
w:

resistive=Hall ¼ �e=We;where �e ¼ �ei þ �en

Hall=advective ¼ !=�Wi if ! � �ni Wi is the ion gyrofrequencyð Þ
¼ !=Wi if ! � �ni

resistive=advective ¼ !�e=�WeWi:

[23] If the ratio (resistive/Hall) � 1, the magnetic field is
frozen to the bulk flow of the electrons, independently the
ion flow and of the value of (Hall/advective). If (resistive/
advective) � 1, the magnetic field is frozen to the bulk flow
of the plasma as a whole; for frequencies and length scales
of interest here, this condition holds throughout the entire
solar atmosphere as well as in the photosphere and below.
With the parameters given in Figure 1 and, in the worst case,
for w of order of 104 Hz, the ratios (resistive/advective) and
(Hall/advective) are of the order of 10−2 and 10−4, respec-
tively, at the photosphere, and the former decreases rapidly
with increasing altitude.
[24] We apply equations (1)–(4) to a vertically stratified

and horizontally uniform, locally one‐dimensional system,
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with a vertical background magnetic field (of magnitude B0,
large in comparison with the perturbed magnetic field). No
vertical flow or current is considered. We assume that hor-
izontal plasma bulk flows, oscillating at a spectrum of fre-
quencies w, are imposed at the lower boundary z = 0. For
frequencies well below the neutral‐ion collision frequency,
w � nni, the waves propagate with VAt = B/(rtm0)

1/2, the
Alfvén velocity based on the total density [see Song et al.,
2005, equation (31)]. Due to the nondispersive propaga-
tion in this frequency range, the perturbations will preserve
their shapes as they propagate upward, although their energy
flux may decrease when damping is significant. For fre-
quencies above VAt/h, where h is the scale height of the
chromosphere, the wavelength may be treated as small in
comparison to h. Given that the observed frequency is
peaked around 3.3 mHz, this approximation may hold well
for weak background magnetic field (but may need to be
modified for a strong magnetic field, in a future study).
Under this approximation, the waves can be treated as
propagating in a locally uniform medium. Horizontal flow
disturbances then propagate upward along the background
magnetic field as Alfvén waves.
[25] The velocity difference between the plasma and the

neutrals is governed by equation (3) and for oscillatory
motion is given by

V� U ¼ � i!

�ni

1

1� i!=�ni
V: ð5Þ

When w � nni, the plasma and the neutrals move in syn-
chronism with a small phase shift [Song et al., 2005] and
therefore the total mass density rt appears in all the rela-
tions. In particular, in this low‐frequency limit, inserting (5)
into the plasma momentum equation (2) reduces the latter to
the simple form

�t
@V
@t

¼ j� B

i.e., the plasma velocity behaves as if it were subject to the
Lorentz force only, the effect of collisions appearing as the
replacement of the plasma density by the total density. For
low frequencies w � aWiWe/ne (negligible resistive/advec-
tive ratio, as discussed above) and w � aWi (negligible
Hall/advective ratio), the generalized Ohm’s law (1) is
reduced to the simple MHD approximation 0 = E + V × B.
Combining these two simple equations with Ampère’s and
Faraday’s laws (4) implies that the magnetic field pertur-
bation dB is related to the velocity perturbation V by dB =
±(rtm0)

1/2V; this is the same as the familiar Walén relation in
a fully ionized magnetized plasma but with the total density
instead of the plasma density.

3.2. Heating Rate

[26] Energy dissipation through processes involving
plasma‐neutral bulk flow differences can be represented by
the total heating rate for the entire medium [Vasyliūnas and
Song, 2005]

q ¼ j � Eþ V� Bð Þ þ �in�ijV� Uj2: ð6Þ

The first term on the right is the Ohmic (Joule) heating,
associated with the last term in (1), which imparts heat to the
plasma only, in the first instance; the second term is heating
directly by plasma‐neutral collisional friction, which imparts
heat approximately equally to both media [Vasyliūnas and
Song, 2005]. With a high collision rate, heat is subse-
quently redistributed to maintain an approximately equal
temperature of both media.
[27] Taking the dot product of j with the generalized

Ohm’s law (1) shows immediately that the Ohmic or
Joule heating term in (6) is proportional to j2. The current
density can be related to the velocity difference from (2)
and (5),

j� B ¼ �n�ni V� Uð Þ 1þ �� i!

�ni
�

� �
; ð7Þ

from which it follows that (with no vertical velocity or
current) the current is proportional to the velocity differ-
ence. The entire heating rate (6) is therefore proportional
to the square of the velocity difference. We are interested
in the value averaged over the oscillations, which for a
product of two complex quantities aA is equal to (1/2)Re
(aA*) and only the real part contributes to the average.
From equations (1), (5), and (7), the heating rate is then
given (see derivation in Appendix A) by

hqi ¼ �t!
2hV 2i

�ni 1þ �ð Þ 1þ !2=�2nið Þ 1þ � 1þ �ð Þ2þ !�=�nið Þ2
h in o

ð8Þ

where � = nenin/WeWi, with hV2i the mean square value of
the (fluctuating) plasma velocity. The term with the
coefficient � is the Joule heating contribution.
[28] It is of interest to consider the dependence of the

heating rate hqi on frequency, degree of ionization
(parameter a), and magnetic field strength. For this purpose
it is convenient to introduce a collision frequency based on
the total number density (ions plus neutrals), nt ≡ nin + nni;
then nin = nt/(1 + a), nni = nta/(1 + a), and equation (8) may
be rewritten as

hqi ¼ �t!
2hV 2i

�t� 1þ 1þ 1=�ð Þ2!2=�2t

h i 1þ �* 1þ �ð Þ 1þ !2=�2t
� �� �

ð9Þ

where �* = �(1 + a) = nent /WeWi. In the frequency range (I)

! � �t�= 1þ �ð Þ ¼ �ni ð10Þ

(or equivalently the ionization range a � w(nt − w) with
w < nt), the heating rate varies as w2:

hqi ¼ �t!
2hV 2i
�t�

1þ �* 1þ �ð Þ½ �: ð11Þ
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In the frequency range (II) nni � w � nt (ionization
range a � w/(nt − w)),

hqi ¼ �t�thV 2i�
1þ �ð Þ2 1þ �* 1þ �ð Þ½ � 	 �t�thV 2i� 1þ �*ð Þ ð12Þ

is nearly independent of w, and in the frequency range
(III) w � nt,

hqi ¼ �t!
2hV 2i
�t

��*

1þ �
ð13Þ

varies again as w2. Figure 3 shows the ratio hqi/hV2i as
function of frequency over a very wide range, for several
altitudes (having different values of a), illustrating how
the heating rate varies as w2 at low and at high fre-
quencies and is nearly constant in between.
[29] The above results are generally valid for a variety of

different astrophysical and space settings. In the solar
chromospheric heating discussion, only the frequency range
(I) needs to be considered, since condition (10), w� nni, the
quasi‐steady state discussed in section 2.2, is amply satisfied
in all regions of interest. Accordingly, we adopt equation
(11) as the expression for the heating rate in the rest of
this paper. The heating rate is largest at low ionization,
decreases with increasing a, and in the limit of full ioni-
zation (a → ∞) reaches a small but nonzero value that
contains Joule heating only (provided the electron collision
frequency is not zero); collisional heating depends critically
on the presence of both neutral and ionized constituents and
thus vanishes at full ionization, but Joule heating can still be
sustained by the contribution to j2 of the time derivative
term in the momentum equation (2), albeit at a level smaller
by a factor 1/a than that resulting from the plasma‐neutral
velocity difference in the case of partial ionization.
[30] The strength of the background magnetic field plays a

role primarily in determining the ratio of Joule heating to
collisional heating, since � is proportional to 1/B2. Joule
heating can thus become dominant in regions of relatively
weak magnetic field. Figure 1b shows the values of � as a
function of altitude for B = 50G. In this case, Joule heating

is dominant below 600 km. The heating does not, however,
diverge in the limit of vanishing background field, despite
what equation (8) might seem to indicate, for two reasons.
First, nonlinear effects become important and constrain the
heating rate when the background magnetic field is so weak
that the Alfvén velocity becomes smaller than the velocity
perturbation at the lower boundary; this implies, by the
Walén relation, that the perturbed magnetic field is no longer
small compared to the background, contrary to what we
assumed in calculating j from equation (7). Second, when the
magnetic field is weaker still, a non‐MHD regime is reached,
since the ratio (resistive/advective) in the generalized Ohm’s
law, discussed in section 3.1, is also proportional to 1/B2 and
in fact equals �w/nni. In this limit (generally not encountered
in the solar atmosphere), the coupling of the magnetic field to
the plasma flow, such as that described in Figure 2, breaks
down; only non‐magnetic (acoustic) mechanisms remain
which, as discussed in the introduction, have not been able
to account for the observed heating.

3.3. Altitude Dependence of Damping/Heating

[31] The amplitude of the wave was treated as constant
with altitude by De Pontieu et al. [2001]. However, as noted
earlier, for strongly damped waves the amplitude of the
waves is not independent of altitude. We have found a
simple way to remove this Born approximation and to
determine the altitude variation of hV2i, by invoking
Poynting’s theorem:

@W

@t
þr � S ¼ � E � jð Þ; ð14Þ

where W = "0E
2/2 + B2/2m0 is the electromagnetic energy

density and S = E × B/m0 is the Poynting vector. Averaged
over the oscillations, ∂W/∂t is zero and S has only an upward
component Sz, which can be evaluated by using the Walén
relationship between dB and V to obtain Sz = rtVAthV2i; the
heating rate (11) can then be written as

hqi ¼ !2H

�niVAt 1þ �ð Þ Sz ð15Þ

where H ≡ [1 + �(1 + a)2]. The essential step in our method
is the realization that in the present case (but not in general
[Song et al., 2009]) hqi = hE·ji (see derivation in Appendix
B). It follows that r·S = − hqi, which together with (15)
implies (in one dimension)

1

Sz

@Sz
@z

¼ �hqi
Sz

¼ � !2H

�niVAt 1þ �ð Þ ; ð16Þ

the right‐hand side is a function independent of hV2i,
allowing the spatial variation of Sz and hence of the wave
amplitude to be obtained by simple integration. The method
can obviously be generalized to any situation where the
energy flux is carried by waves propagating predominantly
in one direction (which may be variable in space). For a
Poynting vector parallel to an inhomogeneous magnetic
field, the left‐hand side of (16) can be generalized to (d/dl)
log(Sk/B) where (d/dl) is the derivative along the field line
(in this study we assume a constant magnetic field, for
simplicity).

Figure 3. Heating rate divided by mean square velocity
fluctuation, as function of frequency. Ionization parameters
at different altitudes: a = 1.97 × 10−4, 9.5 × 10−3, 1.49 at 50
km, 1032 km, and 2024 km, respectively.
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[32] Integrating equation (16) with respect to z for a given
frequency w yields

Sz z; !ð Þ ¼ S0 !ð Þ exp �!2=!2
1

� �
; ð17Þ

where Sz(z, w) and S0(w) are the upward components of the
time‐averaged Poynting vector per unit frequency at altitude
z and at the lower boundary z = 0, respectively, and w1 is
defined by

1

!2
1 zð Þ 


Zz

0

Hdz′

VAt�ni 1þ �ð Þ : ð18Þ

Altitude profiles of w1 are shown in Figure 4 for three dif-
ferent values of the magnetic field strength, B = 10 G, 50 G,
and 100G. Note that w1 always decreases with increasing
altitude, rapidly at lower altitudes but slowly above 400 km.
At the lower boundary (z = 0) w1 is nominally infinite, but
this simply means that the Poynting vector given by (17)
correctly reproduces the assumed boundary value (see
section 3.4 for further discussion). At high altitudes, as the
medium becomes fully ionized (a → ∞), w1 varies very
slowly and for all practical purposes approaches a finite
limiting value wlim which depends strongly on the magnetic
field strength: 2.5 mHz, 27 mHz, and 76 mHz for B = 10 G,
50 G, and 100G, respectively. Waves with frequencies
below this limiting value are observable above the corona;
waves with higher frequencies are strongly damped when
they reach altitudes above which w1 � w. The chromo-
sphere thus behaves as a low‐pass filter for waves, with
upper cutoff frequency w1 locally or wlim for the entire
chromosphere. One should not assume that the power and
the spectrum observed at or above the corona are the same
as those in the photosphere, as sometimes done in previous
weakly damped Alfvén wave models. (Note that “strong”
damping in this context means relative to spatial scale, not
necessarily relative to wavelength; the damping distance of
these waves is in fact much greater than their wavelength,
see equation (32) of Song et al. [2005]).
[33] With the Poynting vector given by (17), the heating

rate per unit frequency as a function of both altitude and

frequency can be obtained in two equivalent ways, from
(15) and (16), respectively (we now deal only with averages
over the oscillations and write hqi simply as q):

q z; !ð Þ ¼ !2H

�niVAt 1þ �ð Þ S0 !ð Þ exp �!2=!2
1

� �
; or ð19aÞ

q z; !ð Þ ¼ � @

@z
S0 !ð Þexp �!2=!2

1

� �� �
: ð19bÞ

Expression (19b) is generally more convenient for actual
calculation, as it avoids some convergence and limit pro-
blems particularly at z = 0 for power law spectra (see more
detailed discussion in section 3.4), whereas (19a) may pro-
vide more physical insight. Note that w1, VAt and nni are all
functions of altitude, and the first two are also strong
functions of the background magnetic field. The heating rate
(19a) is equal to the available energy flux density (Poynting
vector) at the altitude considered, multiplied by a factor
equal to −(d/dz)w2/w1

2 which may be considered the heat
conversion efficiency per unit distance: a direct demon-
stration that the fraction of the energy removed from the
wave by damping is what appears as heat. This efficiency of
heat generation is a strong function of altitude. For a given
frequency, it tends to initially decrease rapidly with
increasing altitude, as � drops from its large value at low
altitudes (see Figure 1b); once � becomes less than unity
(above ∼600 km), it varies slowly, reflecting the opposing
effects of increasing Alfvén speed and decreasing neutral‐
ion collision frequency. For the same Poynting vector at a
given frequency, higher frequency waves are more efficient
in generating heat; the heating rate increases approximately as
w2 in the relevant frequency range, as discussed in section 3.2.
[34] The total heating rate Q at altitude z is obtained by

integrating q over frequency:

Q zð Þ ¼
Z ∞

0
q z; !ð Þd! ¼ � d

dz
F zð Þ ð20Þ

where

F zð Þ ¼
Z ∞

0
S0 !ð Þ exp �!2=!2

1

� �
d! ¼

Z ∞

0
Sz z; !ð Þd! ð21Þ

is the total (integrated over all frequencies) wave energy flux
density at altitude z, which reduces to the source energy flux
density

F0 ¼
Z ∞

0
S0 !ð Þd! ð22Þ

at the lower boundary (identified with the surface of the
photosphere) z = 0, where w1 → ∞ (If z is taken at the top of
the chromosphere, w1 → wlim.) The total power that goes
into generating heat in the chromosphere, given by the
integral of Q over altitude z, is simplyZ z

0
Q z′ð Þdz′ ¼ F0 � F zð Þ: ð23Þ

Figure 4. The upper cutoff frequency w1/2p given by
equation (18) for B = 10G, 50G, and 100G. The vertical
dashed line indicates the peak frequency of the observed
waves (around 3.3 mHz).
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3.4. Evaluation for a Source of Power Law Frequency
Spectrum

[35] To evaluate the heating rate, one has to know the
spectrum of the perturbations at the lower boundary. In an
illustrative specific model, discussed further in section 5.1,
we assume that at the surface of the photosphere the per-
turbation peak frequency is w0 and that the spectrum above
w0 can be described by a power law with slope −n (<−1)
[see, e.g., Kolmogorov, 1941; Batchelor, 1953], extending
from w0 nominally to infinity; for simplicity, we neglect all
power in the spectrum below w0. With the normalization
(22), the Poynting vector then is at the lower boundary z = 0

S0 !ð Þ ¼ n� 1ð ÞF0

!0

!

!0

� 	�n

0

8><
>:

! � !0

! < !0

ð24Þ

and at a given altitude z

Sz z; !ð Þ ¼ n� 1ð ÞF0

!0

!

!0

� 	�n

exp �!2=!2
1

� �
! � !0

0 ! < !0

8><
>: :

ð25Þ

Since n > 1, the contribution of the high frequencies to the
wave energy flux decreases and becomes insignificant well
below nni, ensuring the validity of the approximationw� nni.
A similar initial spectrum has been employed in previous
models [e.g., Tsiklauri and Nakariakov, 2001]. Our results
are not sensitive to the exact shape of the initial spectrum,
provided it is normalized to the appropriate total flux.
[36] There are two factors that determine the wave spec-

trum (25): a power law drop at high frequencies, the slope of
which is imposed by the spectrum at the lower boundary
(possibly controlled by a cascading process as discussed in
section 5.1), and an exponential drop due to the frequency
dependence of the damping. Because w1 decreases with
altitude, so does the Poynting vector at a fixed frequency.

[37] The total flux (21) at a given altitude is now (details
of the frequency integrations are given in Appendix C)

F zð Þ ¼
Z ∞

!0

Sz z; !ð Þd!

¼ F0 exp �!2
0=!

2
1

� �� !0

!1

� 	n�1

G
3� n

2
;
!2
0

!2
1

� 	" #
ð26Þ

where G(a, x) =
R∞
x e−y ya−1 dy is the incomplete G‐ function

[see, e.g., Abramowitz and Stegun, 1965]. The total heating

rate Q at altitude z can be calculated in two equivalent ways:
either taking the frequency integration of (19a), which gives

Q zð Þ ¼ F0
n� 1

2

!2
1H

�niVAt 1þ �ð Þ
!0

!1

� 	n�1

G
3� n

2
;
!2
0

!2
1

� 	
ð27aÞ

or, invoking (20), corresponding to the frequency integration
of (19b), by differentiating F(z) given by (26). A simpler
version in this latter method obtained by combining (27a)
with (26) yields

Q zð Þ ¼ n� 1

2

!2
1H

�niVAt 1þ �ð Þ F0 exp �!2
0=!

2
1

� �� F zð Þ� �
: ð27bÞ

The first method is the more convenient one in most cases.
However, there potentially exists a singular point. At z = 0,
where 1/w1 = 0 by definition, the incomplete G‐ function
reduces to the G‐ function, which is constant for a given n,
(see i.e., equation (C6)). When the power law index n ≤ 3,
Q(0) appears to go to infinity. This singularity is in general
removable, and in the worst case it will produce only a
small loss in precision (see Appendix D for further dis-
cussion). The second expression, on the other hand, may
be useful in regions of weak damping where the variation
of the energy flux density may be so slow as to render the
evaluation of the derivative inaccurate.
[38] Since the incompleteG‐ function is defined for a > 0, or

n > 3, (26) and (27a) are valid only for n < 3. When n > 3,
subtle manipulations are needed to avoid a negative index a,
(see Appendix C for details). For weakly damping, or w0

2 �
w1
2, the small‐argument expansion of G(a, x) for x � 1 gives

to lowest order in w0/w1 (see Appendix C) from (26)

F zð Þ 	
F0 1� !0

!1

� 	n�1

G
3� n

2

� 	
þ n� 1

3� n

!0

!1

� 	2
" #

F0 1� n� 1

n� 3

!0

!1

� 	2
" #

8>>>><
>>>>:

for n < 3

for n > 3

ð28Þ
and from (27a)

(see Appendix C for discussion of the mathematically
singular case n = 3). If w0

2 � wlim
2 , a significant amount of

low‐frequency wave power is propagating into the upper
chromosphere. In the opposite case to strong damping,
w0
2 � w1

2, the large‐argument expansion of G(a, x) for x � 1
gives

F zð Þ ffi F0
n� 1

2

!1

!0

� 	2

exp �!2
0=!

2
1

� �" #
; ð30Þ

i.e., negligible wave power remains, as expected.

Q zð Þ 	
F0

n� 1

2

!2
1H

�niVAt 1þ �ð Þ
!0

!1

� 	n�1

G
3� n

2

� 	
� 2

3� n

!0

!1

� 	2
" #

F0
n� 1

n� 3

!2
1H

�niVat 1þ �ð Þ
1

2

!0

!1

� 	2

8>>>><
>>>>:

for n < 3

for n > 3
ð29Þ
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[39] The different behavior for power law exponent larger
or smaller than 3, see (29), reflects the fact that for n < 3
(which includes the physically interesting case n = 5/3),
heating proportional to w2 diverges at the high‐frequency
limit, and what keeps the total heating rate Q finite is only
the exponential cut‐off in (25) at all z ≠ 0 (avoidance of the
implied singularity near z = 0 is an important advantage of
the first method for calculating Q). For n > 3, Q is always
finite and the exponential cut‐off is not essential.

4. Application to the Solar Chromosphere
and Comparison With Observations

[40] To apply our 1‐dimensional model to the solar
chromosphere requires that the scales of spatial variation be
much longer in the two horizontal dimensions than in the
vertical. The scale in the vertical direction is less than
2000 km and, as we will show next, the most significant
heating in our model occurs below 1000 km. As the per-
turbations considered in our model are associated with the
supergranules, which have horizontal scales of 3 × 104 km,
the 1‐dimensional approximation is applicable.

4.1. Change of Spectrum With Altitude

[41] For illustration purposes, we assume that on the
surface of the Sun, the spectrum follows the power law
given by equation (24); as parameter values we adopt total
energy flux density F0 ∼ 107 erg cm−2 s−1 [De Pontieu et al.,
2001] and frequency of peak power w0/2p = 1/300 s, cor-
responding to the 5 min oscillation peak in observations [e.g.,
Cranmer et al., 2007]. Figures 5a, 5b, and 5c show the fre-
quency spectra of the Poynting vector (25) in units of energy

flux density per unit frequency (erg cm−2), at various alti-
tudes, for n = 5/3 and the background magnetic field B =
10G, 50G, and 100G, respectively. Also shown is the
unmodified power law spectrum (24). The effective upper
cutoff frequency w1 corresponds to the onset of a significant
(on the logarithmic scale) deviation of the spectrum down-
ward from the power law. As the altitude increases, the
power in the high frequencies is damped more strongly;
also, the weaker the background magnetic field, the stronger
the damping. In the case of B = 10G, all the spectra lie
below the power law, indicating that the limiting upper
cutoff frequency wlim/2p lies below the peak frequency w0/
2p. If B is much less than 10G, the wave power above the
chromosphere is predicted by (30) to be more than one order
of magnitude weaker than that in the photosphere. For B =
50G and 100G, by contrast, wlim lies well above w0, and a
range of negligibly weak damping is evident at the lower
frequencies, in which waves can propagate into the upper
chromosphere.
[42] If waves that have propagated up to the corona or

above and can be observed there are taken as indicative of
the energy flux density within the chromosphere (neglecting
the damping), the Alfvén wave damping calculated from the
observed spectrum does not provide much heating, a reason
why previous weakly damped Alfvén‐wave models had
difficulty to produce adequate heating. Even worse, because
more wave power is expected to propagate into the upper
chromosphere when the magnetic field magnitude is larger,
a misleading conclusion may be drawn that heating is
enhanced by a stronger magnetic field, whereas the real
situation is just the opposite: heating is enhanced by a
weaker magnetic field. If the magnetic field magnitude is

Figure 5. Spectra of the model energy flux density from equation (25) with F0 = 107 erg cm−2 s−1

and n = 5/3, at different altitudes, for (a) B = 10G, (b) B = 50G, and (c) B = 100G, respectively. Dashed lines
represent the unmodified power law spectrum. The chromospheric parameters used in the calculation are
from Figure 1. (d) The corresponding spectral density of the velocity for B = 50G, normalized to the
spectrum at 2024 km.
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sufficiently small to make the limiting upper cutoff fre-
quency much less than the peak frequency of the source, all
the waves are expected to be heavily damped in the chro-
mosphere. The physical reason for the stronger damping in
a weaker magnetic field can be easily understood: when
gyromotion is more dominant relative to collision effects,
less heat is produced. (In the extremely weak field limit, as
the background field goes to zero, limitations imposed by
nonlinear and non‐MHD effects have been discussed in
section 3.2).
[43] Velocity fluctuation rather than the Poynting vector is

the more commonly observed quantity. Figure 5d shows
the frequency spectra of mean square velocity, equal to
Sz/(rt VAt); the curves (plotted as relative values normal-
ized to unity at 3.3 mHz and altitude 2024 km) correspond to
the Poynting‐vector spectra shown in Figure 5b. Within the
undamped lower‐frequency range of the spectrum, the mean
square velocity increases with increasing altitude, in contrast
to the energy flux which is independent of altitude in this
frequency range. This discrepancy is simply the result of the
density decrease with altitude in the solar atmosphere; an
observed altitude variation of velocity fluctuation amplitudes
is not, therefore, by itself a reliable indicator of where the
source of the perturbations is located. The undamped portion
of Figure 5d is roughly consistent with the observed fre-
quency and altitude dependence reported by Reardon et al.
[2008, Figure 2]: the power spectrum of the velocity
increases about two orders of magnitude from 200 km to
1000 km (the frequency range of the observations lies below
the upper cutoff frequencies of our model and does not

include any portion of the spectrum where strong damping is
expected). The observed quantity in work by Reardon et al.
[2008], however, is the vertical component of the velocity,
presumably the result of predominantly acoustical wave
modes. The comparison with our present model of horizontal
velocities from Alfvén modes is thus of at most qualitative
significance.
[44] For F0 ∼ 107 erg cm−2 s−1, the total peak spectral

density for the horizontal velocity components at the pho-
tosphere is 0.36 (km/s)2 mHz−1, corresponding to 2.7 km/s
of the averaged velocity amplitude, for n = 5/3. The velocity
is subsonic, consistent with the observed perturbation
velocities [Avrett and Loeser, 2008; Jess et al., 2009], and
should occur more often than the strong wave event reported
by De Pontieu et al. [2007].

4.2. Total Heating Rate and Energy Budget

[45] Figure 6a shows the altitude profile of the total
heating rate per unit volume (in erg cm−3 s−1) for an
assumed source spectrum with the same parameters as in
section 4.1, calculated from (27a), plotted as functions of
altitude for n = 5/3 and B = 10G, 50G, and 100G. Note that
since the point z = 0 is not included in this calculation, the
singularity at the lower boundary has no effect. The heating
rate depends strongly on the background magnetic field and
weaker fields produce more heat at lower altitudes. This can
be easily understood from the dependence of the upper
cutoff frequency on magnetic field strength (discussed in
section 3.3 and shown in Figure 4) and should not depend in
a qualitatively major way on the exact form of the source

Figure 6. (a) The total heating rate (in erg cm−3 s−1), assuming F0 = 107 erg cm−2 s−1, as functions of
altitude for n = 5/3, for B = 10G, 50G, and 100G. The chromospheric parameters are those used in
Figures 1 and 4. (b) The height integrated heat for the heating rates shown in Figure 6a. (c) The
total heating rate for B = 50G and n = 3.5, 2.5, and 5/3, in the same format as Figure 6a. The cor-
responding heating rate from equation (13) of De Pontieu et al. [2001] for 1/f = 5 min (calculated using
the same solar parameters) is shown by the dashed line, for comparison. (d) The heating rate divided by
the mass density (in erg g−1 s−1), for the same parameters as in Figure 6a.
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spectrum. At high altitudes, the heating rate is much reduced
and its dependence on the magnetic field is reversed,
stronger fields producing relatively more heat. This is sim-
ply because less energy loss to heating below means more
energy flux left available above. The total heating rate Q is
10−1 erg cm−3 s−1 or more at the lower chromosphere and
10−2 erg cm−3 s−1 at the middle and upper chromosphere,
consistent with the empirical estimates of what is needed to
sustain the radiative losses [Withbroe and Noyes, 1977;
Vernazza et al., 1981].
[46] Figure 6b shows the altitude profile of the total

heating rate per unit column area, integrated from the lower
boundary up to altitude z. At the top of the chromosphere,
the total integrated heating rates are 9.8, 3.3, and 1.7 ×
106 erg cm−2 s−1 for B = 10G, 50G, and 100G, respectively,
adequate for the required heating in the chromosphere
[Withbroe and Noyes, 1977]. In general, if the background
magnetic field is below 10G, most of the wave power is
damped to heat the solar atmosphere; if it is above 100G,most
of the waves are only weakly damped. It is thus not surprising
that Alfvén waves are only observed sparsely, and then pri-
marily when the background magnetic field is strong [e.g.,
Ulrich, 1996; De Pontieu et al., 2007].
[47] To illustrate the effect of varying the power law

index, Figure 6c shows the heating rates per unit volume for
n = 5/3, 2.5, and 3.5, with B = 50G and with the same values
of F0 and w0 as before. The primary effect of a steeper index
(less wave power at higher frequencies) is to reduce the
heating rate everywhere, as expected from the w2 depen-
dence discussed in section 3.2. The reduction is more pro-
nounced at lower altitudes, but the altitude profile as a
whole is not greatly changed. We have calculated the total
integrated heating rates: 3.3, 1.1, and 0.5 × 106 erg cm−2 s−1

for n = 5/3, 2.5, and 3.5, respectively; the value in the limit
n → ∞ is 0.37 × 106 erg cm−2 s−1. Most of the reduction
occurs around n = 3, the index above which the heating
rate no longer diverges at high frequencies in absence of
the exponential cutoff.
[48] For comparison, the heating rate from Alfvén wave

damping derived by De Pontieu et al. [2001] is shown by the
dashed line in Figure 6c. Their model treated only a single
frequency and thus corresponds to n → ∞ in our model; the
dashed line in Figure 6c looks indeed like the asymptotic
limit for large n. Since De Pontieu et al. [2001] employed the
Born approximation and thus did not include strong damp-
ing, their model is self‐consistent only in the parameter range
w0
2 � wlim

2 , which for 3.3 mHz (5‐min period) holds for
magnetic fields stronger than 50G. As seen in Figure 6c, their
model provides only 2% of the heating in comparison to ours
—not enough to account for the observations.
[49] Figure 6d shows the heating rate per unit mass, Q/rt a

quantity widely used in coronal heating studies. This is the
heating per particle and can be large either because the
heating rate is high (e.g., below 400 km) or because the
density is low (e.g., above 1000 km). The reversed depen-
dence on magnetic field strength between low and high alti-
tudes, noted for the total heating rates in Figure 6a, is here
particularly pronounced. This feature of our model, that at
higher altitudes the heating per unit mass is greater for
stronger field, may be related to some recent observations
[e.g., De Pontieu et al., 2011], such as spicules which are

structures with strong magnetic field and high temperature
extending from the upper chromosphere into the corona.

5. Discussion

5.1. Source of the Waves

[50] The basic physics of our model does not depend
on a specific shape of the frequency spectrum, which
determines only the specific numerical values, e.g., the
heating rate and the height of the maximum heating. A
power law spectrum is a convenient approximation which
simplifies the mathematical treatment and supplies an
analytical solution.
[51] A power law spectrum can be generated by turbulent

flow below the photosphere, or below the lower boundary
of our model. In well‐developed turbulence, a cascading
process transfers energy from longer‐wavelength to short-
er‐wavelength perturbations to form a power law spectrum,
starting from the intrinsic frequency of the disturbance
source, which we identify with the observed 5‐min oscil-
lations. In a spectrum, this frequency appears as the peak
frequency; there is little wave power below it, and the
cascading processes transfer energy to higher frequencies
with a decreasing power density. We can thus take the
peak frequency, w0, as the lower cutoff frequency of the
wave energy, and we assume that the spectrum above w0

can be described by a power law with slope −n [see, e.g.,
Kolmogorov, 1941; Batchelor, 1953]. Observations of the
perturbation spectra [e.g., Ulrich, 1996; Fossum and
Carlsson, 2005; Reardon et al., 2008] show in general a
peak frequency near 1/300s, for 5‐min period oscillations,
and small power in both higher and lower frequencies. In
our model, higher frequency waves are more efficient in
generating heating and, even if they may carry only a small
fraction of the total wave power, may still play an
important (if not dominant) role in solar atmospheric
heating.
[52] The perturbation power at the photosphere will in

general be different in vertical and horizontal directions. The
physical process described by our model does not rely on an
anisotropy in the perturbations although only perturbations
perpendicular to the background magnetic field contribute,
and in our presently assumed simplified geometry they are
horizontal. Observations have nonetheless indicated that
horizontal perturbations are dominant in the low chromo-
sphere [e.g., Avrett and Loeser, 2008]. Vertical pertur-
bations are important in some other mechanisms (e.g.,
shock heating) which may complement our model at high
altitudes.

5.2. Possible Nonlinear Wave Effects

[53] So far we have assumed that the perturbation
spectrum is produced by cascading below the photosphere
and propagates into the chromosphere, where the higher
frequencies are absorbed. The cascading may, however,
continue to occur at higher altitudes, transferring energy
from lower to higher frequencies also in the chromo-
sphere. Ideally, the cascading process does not generate
more total wave power, and power gained at higher fre-
quencies is that lost at lower frequencies. However, since
(as we have shown) high frequency waves are more effi-
cient in generating heat, this secondary cascading can lead
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to more heating and to a higher total heating rate. The size
of the effect depends on the cascading time compared with
the upward wave propagation time. If the former is much
shorter than the latter, the cascading process in the chro-
mosphere will contribute significantly to the chromospheric
heating, otherwise not. Beyond the chromosphere in the
corona, on the other hand, the propagation time can be very
long and the secondary cascading may be important.

6. Conclusions

[54] We have developed a model for heating the solar
atmosphere by strong damping of Alfvén waves injected
from the photosphere and below. The damping mechanism
is interaction between plasma and the neutral particles in the
weakly ionized medium, specifically, frictional dissipation
by ion‐neutral collisions together with Joule heating (the
result of electron collisions). The theory includes self‐con-
sistently the collisions among electrons, ions, and neutrals,
the interaction between charged particles and the electro-
magnetic field, and the reduction of the wave energy flux by
the damping. Although so far we have treated only the
geometrically simple case of one‐dimensional stratified
atmosphere, the model already predicts (with reasonable
parameter values and without invoking anomalous pro-
cesses) heating rates consistent with what is inferred from
observations. Furthermore, in contrast to most previous
models, the predicted spatial distribution places the bulk of
the heating in the lower chromosphere, the place where it is
required by the observations.
[55] Two essential elements of our treatment are the use

of Poynting’s theorem to determine self‐consistently the
altitude profile of the wave energy flux and the inclusion of
a broad frequency spectrum (whereas previous models of
heating by damping of Alfvén waves mostly treated a
single frequency and assumed an altitude‐independent
wave power). A broad spectrum is particularly important
because the rate of heating by the mechanism under dis-
cussion increases as w2, and hence the high frequency
portion of the spectrum contributes to the heating more than
its proportionate share of the wave power. The exact form
of the wave spectrum determines quantitatively the heating
rate but does not affect the applicability of the mechanism.
For a power law initial spectrum in the photosphere, the
energy flux as a function of frequency and height is given
in (25).
[56] Since our present simplified model is one‐dimen-

sional, the background magnetic field can only be described
as an average over a large area. Within this limitation, the
model predicts that, for a given wave energy flux in the
photosphere, heating is stronger in the weaker‐field regions.
This result may appear to many to be counter‐intuitive, but
it has a firm physical basis: Joule heating is enhanced when
electron gyromotion becomes less important relative to
collisions.
[57] The damping of the high‐frequency waves with

increasing altitude (an indispensable ingredient of the
heating mechanism) implies that they are filtered out by
the chromosphere and cannot be observed above the
transition region. To verify this effect observationally,

there are two opposing requirements: significant wave
power, requiring weak damping and a stronger magnetic
field, and lower upper cutoff frequency, requiring a weaker
field. These may be difficult to meet with currently
available techniques.
[58] In view of observations showing that the chromo-

sphere is highly dynamic in time with many fine structures
[e.g., Jess et al., 2009; De Pontieu et al., 2007] and given
the long history of unsuccessful attempts to model the
quasi‐steady state chromospheric heating, it has been argued
[Carlsson and Stein, 1997] that the solar atmosphere may
not be in equilibrium and there does not exist an equilibrium
state of the system. Without taking sides in the debate over
whether the quasi‐steady state is a useful concept to study
solar atmospheric heating [e.g., Carlsson, 2007; Martínez‐
Sykora et al., 2008; Vecchio et al., 2009], we note that the
quasi‐steady state is useful to describe the time average of a
system which may or may not be in equilibrium. Our zeroth‐
order or quasi‐steady state model (which does not describe
explosive processes and is, moreover, so far highly simpli-
fied geometrically) has shown that the solar atmosphere
heating problem can be understood, at least in orders of
magnitude, with simple concept and processes if the anal-
ysis is conducted self‐consistently.
[59] We have focused on the lower altitudes of the solar

atmosphere, below 1000 km. Other mechanisms, possibly
involving compressional or acoustic modes, may be acting
at higher altitudes. Furthermore, turbulence [e.g., Hollweg,
1986; Heyvaerts and Priest, 1983; Inverarity and Priest,
1995; Matthaeus et al., 1999] and reconnection [e.g.,
Sturrock and Uchida, 1981; Parker, 1988] may also play
some roles in the heating process. All these could contribute
to the overall final understanding of the solar atmosphere
heating problem; we claim no exclusivity for our mecha-
nism. Nevertheless, our model appears to provide the bulk
of the required heating at the right place, and this suggests
that the underlying physical mechanism is likely to be a key
constituent of a successful theory. Detailed comparison with
observations will be made when the model is developed to a
more realistic stage.

Appendix A: Heating Rate

[60] From (1), the Ohmic heating rate is,

j* � Eþ V� Bð Þ ¼ me�ejjj2=Nee
2: ðA1Þ

From (7)

jjj2 ¼ j � j* ¼ �n�ni=Bð Þ2 1þ �ð Þ2þ �!=�nið Þ2
h i

jV� Uj2: ðA2Þ

Combining (A2) with (A1) gives the Ohmic heating as

j* � Eþ V� Bð Þ ¼ �e�in
WeWi

1þ �ð Þ2þ �!=�nið Þ2
h i

�n�nijV� Uj2:
ðA3Þ
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The conversion from the velocity difference to the pertur-
bation velocity, from (5):

jV� Uj2 ¼ 1

1þ !2=�2ni

!

�ni

� 	2

jVj2: ðA4Þ

The total heating rate (damping rate) is obtained by adding
together Ohmic heating and collisional friction heating:

hqi ¼ j* � V� Bþ �in�ijV� Uj2

¼ 1þ �e�in
WeWi

1þ �ð Þ2þ �!=�nið Þ2
h i
 �

�n�nih V� Uð Þ2i

¼ 1þ �e�in
WeWi

1þ �ð Þ2þ �!=�nið Þ2
h i
 �

!2

�ni 1þ !2=�2nið Þ �nhV
2i:

ðA5Þ

Appendix B: Relation Between the Heating Rate
and E·j

[61] Note that E·j depends on frame of reference while q
does not; in general, E·j includes heating and possible work
done. The two are equal in a specific frame of reference
under certain conditions. In our treatment, E and S are both
defined in the frame of reference of the local solar atmo-
sphere, essentially at rest relative to the Sun. In our frame of
reference, from (6) we have

q� E � j ¼ j � V� Bþ �in�ijV� Uj2;

use the plasma momentum equation (2) to eliminate j × B

q� E � j ¼ ��i
@V
@t

� Vþ �ni�nU � U� Vð Þ;

and the neutral momentum equation (3) to eliminate U − V,
obtaining

q� E � j ¼ � @

@t

1

2
�iV

2 þ 1

2
�nU

2

� 	
:

The right‐hand side vanishes when averaged over the
oscillations, thus hqi = hE·ji, QED. When other forces are
present, this simple relationship may not hold.

Appendix C: Derivations of Flux and Total Heating
Rate for Power Law Spectrum

[62] Derivation of the flux, equation (26): substituting
(25) into (22) obtains

F zð Þ ¼
Z∞
!0

d! n� 1ð ÞF0

!0

!

!0

� 	�n

e�!2
=!2

1: ðC1Þ

Set u ≡ w2/w1
2

F

F0
¼ n� 1

2

!0

!1

� 	n�1 Z∞
!2
0=!

2
1

du u�
nþ1
2 e�u: ðC2Þ

Integration by parts (integrate u−(n+1)/2 first) yields

F

F0
¼ � !0

!1

� 	n�1

u
1�n
2 e�uj∞!2

0=!
2
1
þ

Z∞
!2
0=!

2
1

du u
3�n
2 �1e�u

2
64

3
75

¼ e�!2
0=!

2
1 � !0

!1

� 	n�1

G
3� n

2
;
!2
0

!2
1

� 	
ðC3Þ

which is (26).
[63] Derivation of the total heating rate, equation (27a):

substituting (25) into (15), the first expression of (20)
becomes

Q ¼
Z ∞

!0

q z; !ð Þd! ¼
Z ∞

!0

d! F0
n� 1ð Þ!0H

�niVAt 1þ �ð Þ
!

!0

� 	2�n

e�!2=!2
1 :

ðC4Þ

Set u ≡ w2/w1
2

Q ¼ q0!1

2

!0

!1

� 	n�1 Z∞
!2
0=!

2
1

du u
3�n
2 �1e�u

¼ q0!1

2

!0

!1

� 	n�1

G
3� n

2
;
!2
0

!2
1

� 	
ðC5Þ

which is (27a); q0 ≡ F0
n�1ð Þ!1H

�niVAt 1þ�ð Þ.
[64] The incomplete G‐ function is reduced to the G‐

function for small argument x � 1

G a; xð Þ 	 G að Þ � xa

a
1� x

aþ 1
þ   

� 	
ðC6Þ

(valid only for a > 0), and for large argument x � 1

G a; xð Þ 	 xa�1e�x 1þ a� 1

x
þ a� 1ð Þ a� 2ð Þ

x2
þ   

� �
ðC7Þ

which can be used to simplify the heating rates for param-
eter ranges of w0 � w1 and w0 � w1, respectively.
[65] The incomplete G‐ function is defined for a > 0, or

n > 3; or (C5) is valid for n < 3. When n > 3, one must
then continue the integration by parts in equation (C3), or
equivalently invoke the recurrence relation

G aþ 1; xð Þ ¼ aG a; xð Þ þ xae�x;
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repeatedly until one reaches a positive index a; then the
expansion (C6) can be applied. For example, for 3 < n < 5

For 5 < n < 7

and so on. It is apparent that for n → ∞, i.e., for effec-
tively a single frequency w0, F/F0 → exp − (w0

2/w1
2).

[66] When n is large but not infinite, since the lowest‐
order term is (w0/w1)

2, the flux ratio can be approximated by
expanding the exponential function:

F

F0
	 1� !0

!1

� 	2
" #

1� 2

n� 3

!0

!1

� 	2
" #

ffi 1� n� 1

n� 3

!0

!1

� 	2
" #

:

ðC10Þ

Equations (C7) through (C10) as well as the n � 3 expres-
sions in equations (28) and (29) of the main text apply only if
n is well above 3. The case n = 3 can be treated by noting that
the incomplete G‐functionwith zero index amay be expressed
as the exponential integral:

G 0; xð Þ ¼
Z ∞

x
e�t t�1dt ¼ E1 xð Þ ðC11Þ

which has the expansions (g = 0.5772157… Euler’s constant)

E1 xð Þ ¼ � log x� � þ x� x3

2� 2!
þ   

¼ e�x 1

x
� 1

x2
þ   

� � x � 1

x � 1

Appendix D: Remarks on Convergence and Limits

[67] To calculate the total flux, F(z), or total heating rate,
Q(z), one integrates (17) or (19a) over the frequency,
respectively. As 1/w1 = 0 at z = 0, by definition, for the
heating rate Q(z) the exponential factor in (19a) becomes 1
and the convergence of the frequency integration is deter-
mined by the frequency dependence of the Poynting flux

S0(w). When the power law index n ≤ 3, the integral for the
heating rate Q with its factor of w2 does not converge at the

high‐frequency limit. This singularity becomes more obvi-
ous in (27a). On the other hand, this singularity does not
occur in the total flux integration F(z) because the flux is
well defined at the lower boundary by (20).
[68] Below we show that the singularity for Q(z) at z = 0

(or 1/w1 = 0), when n ≤ 3, is in general removable.
[69] Assume first the upper limit of the integration to be w′

and then let w′ go to infinity; i.e., take the source spectrum as

S0 !ð Þ ¼ n� 1ð ÞF0

!0

!0

!

� n
for !0 < ! < !′ ;¼ 0 otherwise

ðD1Þ

More precisely, F0 should be replaced by F0(1 −(w0/w′)
n−1)−1

in all the equations below. Then the total heating rate is the
integral fromw0 tow′, equal to the integral fromw0 to∞minus
that from w′ to ∞. Equation (27a) then becomes

Q ¼   gf !2
1

!0

!1

� 	n�1

G
3� n

2
;
!2
0

!2
1

� 	
� G

3� n

2
;
!′2

!2
1

� 	� �
ðD2Þ

where {···} = F0
n�1ð ÞH

2�niVAt 1þ�ð Þ. If w′ � w1, the second G‐

function becomes negligible (see large‐argument expansion,
equation (C7)) and we recover the original equation (27a).
[70] If w1� w′ and w1� w0 (as near z = 0 where w1→ ∞),

the small‐argument expansion (equation (C6)) gives for the

term in brackets 2
3�n[(

!′

!1
)3−n − (!0

!1
)3−n] and thus

Q 	   gf 2!2
0

3� n

!′

!0

� 	3�n

�1

" #
ðD3Þ

F

F0
¼ � !0

!1

� 	n�1

u
1�n
2 e�uj∞!2

0=!
2
1
þ 2

3� n
u
3�n
2 e�uj∞!2

0=!
2
1
þ 2

3� n

Z∞
!2
0=!

2
1

du u
5�n
2 �1e�u

2
64

3
75

¼ e�!2
0=!

2
1 1� 2

n� 3

!0

!1

� 	2
" #

þ !0

!1

� 	n�1 2

n� 3
G

5� n

2
;
!2
0

!2
1

� 	
:

ðC8Þ

F

F0
¼ � !0

!1

� 	n�1

u
1�n
2 e�uj∞!2

0=!
2
1
þ 2

3� n
u
3�n
2 e�uj∞!2

0=!
2
1
þ

þ 2

3� n

2

5� n
u
5�n
2 e�uj∞!2

0=!
2
1
þ

Z∞
!2
0=!

2
1

du u
7�n
2 �1e�u

0
B@

1
CA

2
666664

3
777775

¼ e�!2
0=!

2
1 1� 2

n� 3

!0

!1

� 	2

þ 4

n� 3ð Þ n� 5ð Þ
!0

!1

� 	4
" #

� !0

!1

� 	n�1 4

n� 3ð Þ n� 5ð ÞG
7� n

2
;
!2
0

!2
1

� 	
ðC9Þ
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This is independent of w1, hence there is no problem as
w1 → ∞.
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