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A STUDY OF ALFVÉN WAVE PROPAGATION AND HEATING THE CHROMOSPHERE

Jiannan Tu and Paul Song
Physics Department and Center for Atmospheric Research, University of Massachusetts, Lowell, MA 01854, USA

Received 2013 June 10; accepted 2013 August 30; published 2013 October 15

ABSTRACT

Alfvén wave propagation, reflection, and heating of the chromosphere are studied for a one-dimensional solar
atmosphere by self-consistently solving plasma, neutral fluid, and Maxwell’s equations with incorporation of the
Hall effect and strong electron–neutral, electron–ion, and ion–neutral collisions. We have developed a numerical
model based on an implicit backward difference formula of second-order accuracy both in time and space to
solve stiff governing equations resulting from strong inter-species collisions. A non-reflecting boundary condition
is applied to the top boundary so that the wave reflection within the simulation domain can be unambiguously
determined. It is shown that due to the density gradient the Alfvén waves are partially reflected throughout the
chromosphere and more strongly at higher altitudes with the strongest reflection at the transition region. The waves
are damped in the lower chromosphere dominantly through Joule dissipation, producing heating strong enough
to balance the radiative loss for the quiet chromosphere without invoking anomalous processes or turbulences.
The heating rates are larger for weaker background magnetic fields below ∼500 km with higher-frequency waves
subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above
which the waves are completely damped. At the frequencies below which the waves are not strongly damped,
the interaction of reflected waves with the upward propagating waves produces power at their double frequencies,
which leads to more damping. The wave energy flux transmitted to the corona is one order of magnitude smaller
than that of the driving source.
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1. INTRODUCTION

The solar atmosphere is rich in various wave activities, in-
cluding low-frequency (fast, slow, and Alfvén) magnetohydro-
dynamic (MHD) waves. Among MHD wave modes, Alfvén
waves have been postulated to play an important role in deter-
mining the thermal structures of the solar atmosphere because
Alfvén waves, which can propagate from the photosphere up to
the corona, are likely an efficient heating source of the solar at-
mosphere (e.g., see the review by Mathioudakis et al. 2013 and
references therein). Recent observations from satellites (e.g., De
Pontieu et al. 2007; He et al. 2009; McIntosh et al. 2011) and
ground-based instruments (e.g., Tomczyk et al. 2007; Ofman
& Wang 2008; Jess et al. 2009) have provided unprecedented
details of the Alfvénic perturbations in the solar atmosphere.
These observations support the idea that Alfvén waves can pro-
vide sufficient energy to balance radiation energy loss and accel-
erate the solar wind (Alfvén 1947; Osterbrock 1961; Alazraki
& Couturier 1971; Belcher 1971), although energy conversion
mechanisms have been lacking.

The ultimate energy source of wave activities in the chromo-
sphere and corona is the mechanical energy of solar convection.
Turbulent convection motion in the photospheric or subpho-
tospheric layers of the Sun can drive Alfvénic perturbations.
Regarding the propagation of waves in the solar atmosphere,
it is generally believed that Alfvén speed monotonically in-
creasing with altitude can cause reflection of the Alfvén waves,
particularly at the transition region between the chromosphere
and the corona (e.g., Cranmer & van Ballegooijen 2005; Cally
2012 and references therein). However, wave reflection, if it ex-
ists, is either not self-consistently described in analytical studies
because of oversimplified structure of the solar atmosphere (for
instance, reflection in the transition region may not be well

understood) or it is masked by artificial reflections from the
boundaries of the simulation domain.

Chromospheric heating is a long-outstanding problem that
has often been overlooked or confused with other phenom-
ena. While there is little doubt that Alfvén waves carry suf-
ficient energy, the mechanisms responsible for converting the
wave energy to thermal energy in the solar atmosphere are
not well understood. A mechanism that has been pursued is
that the heating takes place through collisions between the
plasma and the neutral gas (e.g., Piddington 1956; Osterbrock
1961; Haerendel 1992; De Pontieu et al. 2001; Goodman 2004;
Khodachenko et al. 2004; Leak et al. 2005; Fontenla et al.
2008; Arber et al. 2009; Carlsson et al. 2010; Krasnoselskikh
et al. 2010; Gudiksen et al. 2011; Song & Vasyliūnas 2011;
Zaqarashvili et al. 2011). The chromosphere is only partially
ionized, and its plasma and neutral atmosphere are basically
two distinct fluids coupled by collisions subject to different
forces and therefore possibly moving differently; the systematic
difference in bulk velocity may produce considerable energy
dissipation (heating) in regions of high density and heavy col-
lisions. Most previous studies assume that the Alfvén wave
energy flux and spectrum do not change significantly with al-
titude so that the wave is weakly damped. Therefore, the heat-
ing rates derived from those studies are insufficient to meet
the energy requirement for heating the solar atmosphere. Some
studies used sophisticated MHD models which, in principle,
can remove the assumption of weak damping. For example,
Leak et al. (2005) studied chromospheric heating through MHD
simulations and concluded that waves with frequencies above
0.6 Hz are completely damped (a strong damping). However,
the heating from Leak et al.’s (2005) study is concentrated
in the upper chromospheric region between 1000–2000 km
instead of in the lower chromosphere (below 800 km)
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where most of the energy deposit is required to balance the
radiative loss.

In a recent theoretical study, Song & Vasyliūnas (2011) con-
sidered strong damping of the Alfvén waves as a function of
frequency and height with self-consistent inclusion of the col-
lisions among electrons, ions, and neutrals; the interaction be-
tween charged particles and the electromagnetic (EM) field; and
the reduction of the wave energy flux by damping. This study
correctly includes heating due to both frictional dissipation by
ion–neutral collisions from the relative flow between ions and
neutrals and Ohmic, or Joule, heating by electron collisions
from the current (Vasyliūnas & Song 2005). Using the parame-
ters of a semiempirical model for quiet-Sun conditions, Song &
Vasyliūnas (2011) showed that their energy conversion mecha-
nism could generate sufficient heat to account for the radiative
loss in the atmosphere, with most of the heat deposited at lower
altitudes as required and stronger heating in the weaker mag-
netic fields at altitudes below about 400–500 km. Tsiklauri &
Pechhacker (2011) showed that electron–neutral collisions may
also play a role in the absorption of high-frequency (>1 THz)
EM waves in the chromosphere when electrons oscillate in the
EM waves. However, the heating flux produced by the absorp-
tion of high-frequency EM waves only accounts for as much as
20% to 45% of the chromospheric radiative loss flux require-
ment. Tsiklauri & Pechhacker (2011) further called attention
to differentiating the wave heating of the different parts of the
chromosphere, i.e., the magnetic network, which is the bound-
ary between the super-granulation cells, and the internetwork
regions, which constitute the largest part of the chromospheric
surface area. The energy conversion mechanism proposed by
Song & Vasyliūnas (2011), which will be further investigated in
the present study, produces stronger heating in the weaker mag-
netic fields at lower altitudes, and therefore is particularly highly
relevant to heating the chromospheric internetwork regions. It
should be noted that although acoustic waves are prevalent in
the regions of weak magnetic field at lower altitudes, their en-
ergy flux is smaller, by a factor of at least 10 at high frequen-
cies (10–50 mHz) and a factor of two at lower frequencies
(5.2–10 mHz), than that required to balance the radiative loss
in the non-magnetic regions of the chromosphere (Fossum &
Carlsson 2005; González et al. 2010).

In this study we numerically solve governing equations sim-
ilar to those used in Song & Vasyliūnas (2011) but remove
some simplifying approximations, such as linear superposition
of individually propagating monochromatic waves and the ab-
sence of reflection, which are necessary to derive the analytical
solution, to study the propagation of Alfvén waves from the pho-
tosphere to the corona through the chromosphere although the
model remains one-dimensional in the present stage. We treat
the plasma and neutral as two separate fluids so that frictional
heating due to ion–neutral collisions, in addition to resistive
dissipation, can be explicitly calculated. The separation of the
two fluids is important for illustrating the physical processes
underlying the heating. Furthermore, the Hall term is retained
in the generalized Ohm’s law to account for its effects in the
region where the electron collision frequency is less than the
electron gyrofrequency (so that the resistive term is less than
the Hall term). The numerical solutions provide a quantitatively
better description of the propagation and damping of Alfvén
waves in the vertically non-uniform solar atmosphere with the
inclusion of the wave reflection, particularly at the transition re-
gion between the chromosphere and corona. Theoretical studies
often exclude the transition region so as to make the problem

tractable. Furthermore, the numerical solutions are not restricted
by the requirement that the wavelength is small compared to the
scale of the gradient in the chromosphere, a condition that is
not valid for the waves of frequencies below 1 Hz. The present
simulations show that significant reflection occurs throughout
the chromosphere with the strongest reflection at the transition
region. The waves above an upper cutoff frequency (depending
on the ambient magnetic field) are completely damped mostly
because of Joule dissipation. The amount of the wave energy
that can penetrate into the corona after reflection and damping is
one order of magnitude smaller than that of the driving source.
In the next section we discuss our governing equations and nu-
merical method, followed by a section presenting the simulation
results. The final section gives our conclusions and discussion.

2. GOVERNING EQUATIONS AND
NUMERICAL SCHEME

In the present study we consider the propagation of Alfvén
waves in a background solar atmosphere. We assume hydro-
static equilibrium in the vertical direction. The density and tem-
perature profiles are specified by a semiempirical model given
by Avrett & Loeser (2008; see Figure 1). In this simple one-
dimensional stratified geometry the spatial variation is only in
the vertical direction, i.e., along altitude z. A background mag-
netic field is assumed: B0 = B0ẑ with ẑ vertically upward. At
the present stage of the model development, the densities of the
plasma and neutrals, as well as the temperature, are assumed to
be constant in time. The vertical electric currents are zero in this
simplified horizontally uniform system and the vertical elec-
tric field is ignored. The vertical flow velocities are assumed
to be zero so that the continuity equations are automatically
satisfied in one-dimension. Therefore, the equation system in-
cludes only the horizontal components of momentum equations
of the plasma and neutrals, Faraday’s and Ampère’s laws, and
the generalized Ohm’s law (Vasyliūnas & Song 2005)

ρ
∂V⊥
∂t

= J⊥ × B0 − ρνin(V⊥ − U⊥) +
me

e
(νen − νin)J⊥ (1)

ρn

∂U⊥
∂t

= ρνin(V⊥ − U⊥) − me

e
(νen − νin)J⊥ (2)

∂B⊥
∂t

= −∇ × E⊥ (3)

μ0J⊥ = ∇ × B⊥ (4)

E⊥ = −V⊥ × B0 +
1

ene

J⊥ × B0 +
me

e2ne

(νen + νei)J⊥, (5)

where ∇ = ẑ∂/∂z for the one-dimensional variation in the
vertical direction, V⊥ and U⊥ are the horizontal bulk velocity
of the plasma and neutral, respectively, E⊥, B⊥, and J⊥ are
the horizontal electric field, (perturbation) magnetic field, and
electric current density, respectively, ne is the electron number
density, ρ and ρn are the plasma and neutral mass density,
respectively, me is the electron mass, e is the elementary
charge; νin, νen, and νei are the ion–neutral, electron–neutral
and electron–ion collision frequencies, respectively, and μ0 is
the permeability in a vacuum. The generalized Ohm’s law is
derived by combining the momentum equations of the electrons
and ions, and neglecting the electron inertia, which is small on
time scales longer than the electron plasma oscillation period,
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Figure 1. (a) Density and temperature structures, adapted from the chromo-
spheric model of Avrett & Loeser (2008). The transition region is located
between about 2130 km and 2200 km. The lower ghost region is a linear
extrapolation of the model to z = −600 km. In the upper ghost region, densities
and temperature are set as uniform. (b) Altitude distribution of ion–neutral colli-
sion frequency νin, electron collision frequency νe = νen + νei , and neutral–ion
collision frequency νni = ρνin/ρn. Ion and electron gyrofrequencies with an
ambient magnetic field of 100 G are plotted as dashed and solid vertical lines,
respectively. The parameters in the ghost regions are in dash-dotted lines.

collision period, and electron gyroperiod (Rossi & Olbert 1970;
Greene 1973; Song et al. 2005; Vasyliūnas & Song 2005). A
charge quasi-neutrality has been assumed. Note that in vertical
one-dimensional geometry, the horizontal forces associated with
flow and pressure gradients are zero. The displacement current
has been neglected because of non-relativistic motion associated
with the waves of interest in the chromosphere.

The mechanical energy input to the solar atmosphere is treated
self-consistently to become wave energy with a part of it being
dissipated into thermal energy by heating. Although energy
equations are not included, if the thermal energy deposited is
radiated, the present treatment remains self-consistent on the
condition that the heat conduction is negligible. The heating
rate (not temperature) can be evaluated based on the solutions
of Equations (1)–(5). In a medium consisting of electron, ion,
and neutral fluids, the total heating rate (plasma heating rate
plus neutral heating rate) is represented by (Vasyliūnas & Song
2005)

q = J⊥ · (E⊥ + V⊥ × B⊥) + ρνin|V⊥ − U⊥|2
= ηJ2

⊥ + ρνin|V⊥ − U⊥|2, (6)

where η = me(νen + νei)/(e2ne) is the Ohmic resistivity. We
have applied the generalized Ohm’s law to obtain the second
expression of Equation (6). The term J⊥ · (E⊥ + V⊥ × B⊥),
associated with the electric field in the plasma frame of reference
and determined by the last term of Equation (5), represents the
true Joule heating, which is caused by electron collisions with
other species. The term ρνin|V⊥ − U⊥|2 is the rate of frictional
heating caused by collisions between ions and neutrals. On
short time scales, the heat is deposited approximately equally
to the plasma and neutral. On time scales much longer than the
ion–neutral collision period, the heat is uniformly distributed in
the whole medium and radiated.

By using Ampère’s law to replace the current density in
Equations (1), (2), and (5) and using the generalized Ohm’s
law (5) to eliminate electric field in Faraday’s law (3), we
may obtain a set of equations for the plasma and neutral ve-
locity V⊥ and U⊥, and perturbation magnetic field B⊥, which
for the assumed one-dimensional geometry is perpendicular to
the ambient magnetic field. This equation set describes the dy-
namics of the plasma, neutrals, and magnetic field on MHD
time scales for the simple one-dimensional stratified solar at-
mosphere. A similar equation set has been obtained for the
magnetosphere–ionosphere/thermosphere system and solved
by a fully implicit difference method (Tu et al. 2011). Here we
numerically solve the equation system using the fully implicit
scheme, but with time difference given by a second-order back-
ward difference formula (BDF2; Curtiss & Hirschfelder 1952).
The resulting difference equations with normalized variables are

3
(
V̄n+1

⊥,j+1/2 − V̄n
⊥,j+1/2

)

2Δt̄
− V̄n

⊥,j+1/2 − V̄n−1
⊥,j+1/2

2Δt̄

= B̄n+1
⊥,j+1 − B̄n+1

⊥,j

ρ̄j+1/2Δz̄
− ν̄in,j+1/2

(
V̄n+1

⊥,j+1/2 − Ūn+1
⊥,j+1/2

)

+
(ν̄en,j+1/2 − ν̄in,j+1/2)

¯ρj+1/2Ω̄e0Δz̄
ẑ × (

B̄n+1
⊥,j+1 − B̄n+1

⊥,j

)
, (7)

3
(
Ūn+1

j+1/2 − Ūn
⊥,j+1/2

)

2Δt̄
− Ūn

⊥,j+1/2 − Ūn−1
⊥,j+1/2

2Δt̄

= αj+1/2ν̄in,j+1/2
(
V̄n+1

⊥,j+1/2 − Ūn+1
⊥,j+1/2

)

− αj+1/2(ν̄en,j+1/2 − ν̄in,j+1/2)

ρ̄j+1/2Ω̄e0Δz̄
ẑ × (

B̄n+1
⊥,j+1 − B̄n+1

⊥,j

)
,

(8)

3
(
B̄n+1

⊥,j − B̄n
⊥,j

)

2Δt̄
− B̄n

⊥,j − B̄n−1
⊥,j

2Δt̄
= V̄n+1

⊥,j+1/2 − V̄n+1
⊥,j−1/2

Δz̄

+
1

Ω̄i0

[
(βj+1 − βj−1)

2Δz̄

(
B̄n+1

⊥,j+1 − B̄n+1
⊥,j−1

)

2Δz̄

+ βj

B̄n+1
⊥,j+1 − 2B̄n+1

⊥,j + B̄n+1
⊥,j−1

Δz̄2

]

− ẑ

Ω̄i0n̄e,j

×
[(

B̄n+1
⊥,j+1 − 2B̄n+1

⊥,j + B̄n+1
⊥,j−1

)

Δz̄2

− (n̄e,j+1 − n̄e,j−1)

2n̄e,j Δz̄

(
B̄n+1

⊥,j+1 − B̄n+1
⊥,j−1

)

2Δz̄

]

, (9)

where the variables with a bar are normalized; superscripts n+1,
n, and n− 1 represent the (n + 1)th, nth, and (n− 1)th time step,

3



The Astrophysical Journal, 777:53 (11pp), 2013 November 1 Tu & Song

respectively, and the subscript j is the spatial grid index; Δz̄ and
Δt̄ are the normalized grid spacing and normalized time step,
respectively; Ω̄e0 and Ω̄i0 are the normalized electron and ion
gyrofrequency, respectively, at the base of the nominal photo-
sphere (i.e., at z = 0); α = ρi/ρn, and β = (ν̄en + ν̄ei)/Ω̄e0n̄e.
The normalized variables are defined as V̄⊥ = V⊥/VA0, Ū⊥ =
U⊥/VA0, B̄⊥ = B⊥/B0, n̄e = ne/ne0, ρ̄ = ρ/ρ0, t̄ = t/t0,
z̄ = z/L, Ω̄e0 = Ωe0t0, Ω̄i0 = Ωi0t0, ν̄en = νent0, ν̄in = νint0,
and ν̄ei = νei t0, where ne0 and ρ0 are the electron density and
plasma mass density, respectively, at z = 0, VA0 = B0/

√
ρ0μ0,

and t0 = L/VA0 with L the length of the simulation domain.
Note that t0 is dependent on the ambient magnetic field.

In Equations (7)–(9) the centered difference is used to
represent spatial derivatives while the spatial grids are staggered:
the plasma and neutral velocities are defined at j + 1/2 (i.e., at
the middle of grids between j and j +1) whereas the perturbation
magnetic field is evaluated at the grid j. Numerical experiments
show that the staggered grids help to avoid checkerboard
numerical instability (Sigmund & Petersson 1998) in solutions
in the region where there are large gradients in the velocity
and/or perturbation of the magnetic field. The BDF2 time
difference method with centered spatial difference results in
second-order accuracy both in time and space difference. Note
that in Equations (7) and (8) the centered difference is with
reference to j + 1/2 so that the spatial differences involving
grids j + 1 and j are second order in accuracy. The BDF2 time
difference involves three levels of time steps: the current n + 1
and the two previous ones, n and n − 1. When n = 0 (at t = 0)
the information before t = 0 is not available, so we use the
standard backward time difference to get solutions at t = −Δt
from given initial conditions at t = 0.

The implicit difference Equations (7)–(9) are a set of linear
algebraic equations and are unconditionally stable so that the
time step is not restricted by the Courant–Friedrichs–Lewy
condition Δt̄ � Δz̄/V̄A, where V̄A = VA/VA0 is the normalized
Alfvén speed. More importantly, due to very large collision
frequencies (up to 1016 s−1) the momentum Equations (1) and (2)
are strongly stiff. Therefore the collisional force terms dictate
that a very small time step be required in order to obtain stable
solutions if an explicit difference method is used. Test runs
using an explicit backward Euler time difference showed that
the time step must satisfy Δt < 10−8 s. Thereafter we use the
real time unit to refer to time and time step since the normalized
time and normalized time step are different for different ambient
magnetic fields (due to different values of t0). The BDF2 time
difference and implicit spatial difference overcome the stiffness
so that the time step can be many orders of magnitude larger
than that of explicit methods. The only constraint on the time
step is the time resolution to resolve the physical processes of
interest.

The solar atmosphere is assumed to be driven by a convective
velocity at the nominal base of the photosphere, which is chosen
as the origin of the z axis (z = 0). The semiempirical model of
the quiet Sun atmosphere by Avrett & Loeser (2008) specifies
the total hydrogen density, neutral hydrogen density, electron
density, and solar atmosphere temperature from −100 km to
about 68,000 km. We consider wave propagation from the
assumed driving source (at the base of the photosphere, i.e.,
z = 0) to 3000 km, encompassing the transition region (between
about 2130 km and 2200 km). In order to minimize the effects of
artificial reflection at the boundaries of the simulation domain,
we extend the simulation domain 600 km below z = 0 and
2000 km above z = 3000 km, i.e., there are two ghost regions.

In the lower ghost region (from z = −600 km to z = 0 km)
the neutral density and temperature below −100 km are linearly
extrapolated. The ionization fraction is assumed to be constant
in the lower ghost region although the results are not sensitive to
the exact densities in that region as its function is to absorb the
downward waves and to avoid reflection upward. In the upper
ghost region (from z = 3000 km to z = 5000 km), however,
the densities and temperature (thus collision frequencies) are
uniform. Figure 1 displays the altitude distribution of the
densities and temperature as well as the collision frequencies.
The ion–neutral, electron–neutral, and electron–ion collision
frequencies are calculated with the expressions given in De
Pontieu et al. (2001), νin = 7.4 × 10−11nnT

1/2, νen = 1.95 ×
10−10nnT

1/2, and νei = 3.759×10−6neT
−3/2, where the neutral

and electron number density nn and ne are in cm−3, temperature
T is in K, and ln Λ is the Coulomb logarithm.

In the panel showing collision frequencies, the ion and
electron gyrofrequencies, Ωi and Ωe, for the ambient magnetic
field B0 = 100 G are also plotted. The ion–neutral collision
frequency is smaller than the ion gyrofrequency above about
800 km in this case so that at higher altitudes the ions become
magnetized. The electron collision frequency (electron–neutral
plus electron–ion) becomes less than the electron gyrofrequency
at altitudes above about 100 km. Therefore, the Hall term in the
generalized Ohm’s law is larger than the resistive term in the
high altitude chromosphere.

It is shown in the upper panel of Figure 1 that the densities in
the lower ghost region increase with decreasing altitude. As
a result, the propagation speed of the perturbations is very
slow. The driving velocity is set at z = 0 in the simulations.
Hence the time for the perturbations to travel back and forth
between the driving source (z = 0) and lower boundary
(z = −600 km) is over 18,000 s for the background magnetic
fields considered, much longer than that in the region of interest
(from 0 to 3000 km), even if the waves are not completely
absorbed in the lower ghost region. For simplicity, we set lower
boundary conditions as ∂B̄⊥/∂z̄ = 0, V̄⊥ = 0, and Ū⊥ = 0 at
z = −600 km.

For the upper boundary conditions, we note that the Alfvén
waves are dispersionless and preserve the shape of the wave
packets if the media is uniform, which is the case in the upper
ghost region from 3000–5000 km. Therefore, non-reflecting
boundary conditions can be achieved by setting V̄⊥(z̄top) =
V̄⊥(z̄top − V̄AΔt̄), Ū⊥(z̄top) = Ū⊥(z̄top − V̄AΔt̄), and B̄⊥(z̄top) =
B̄⊥(z̄top − V̄AΔt̄), where z̄top is the normalized altitude of the top
boundary (at 5000 km).

In the simulations we use a time step of Δt = 0.05 s so that
the wave frequency up to 10 Hz can be sampled. Note that for
a discrete time series, Nyquist frequency fN = 1/2Δt is the
maximum frequency that can be resolved. We do not attempt to
resolve higher frequencies by using smaller time steps because
the waves with frequencies higher than 1 Hz carry little energy
if the peak frequency of a power law spectrum is around 3 mHz.

The spatial grid spacing used is 0.25 km. Such small spacing is
adequate for resolving short wavelength waves at low altitudes
(below ∼100 km) where the Alfvén wave speed, calculated
using the total mass density (the plasma plus the neutral
ρt = ρ + ρn), can be as low as ∼0.3 km s−1, depending on
the strength of the ambient magnetic field. For a 1 Hz wave, the
wavelength is as short as about 0.3 km near the photosphere. The
wavelength increases with altitude and becomes very large at
high altitudes, up to 10,000 km. Although an efficient program
should use non-uniform grid spacing with finer grids at lower
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altitudes (and the transition region) and coarser grid spacing at
high altitudes, the non-uniform grid system, however, makes the
difference equations more complicated and usually downgrades
the accuracy of the spatial difference to the first order. For
simplicity and accuracy, we choose uniform grids at the cost
of efficiency.

Equations (7)–(9) are a system of linear algebraic equations,
which can be cast concisely in the form of

A x = r, (10)

where A is an N × N sparse matrix with N being the number
of rows and columns, x the solution vector of N variables,
and r a vector (N elements) as a function of solutions of
the previous two time steps. There are many algorithms that
have been developed to efficiently solve large linear equation
systems with the sparse matrix, including those based on
the Krylov subspace (KSP) method (e.g., Saad 2003). In
the present study, we use a linear equation solver from the
Portable Extensible Toolkit for Scientific Computation (PETSc)
package developed by the PETSc team at Argonne National
Laboratory (http://www.mcs.anl.gov/petsc). PETSc utilizes one
of various KSP-based algorithms to solve a linear equation
system either sequentially or in parallel (Balay et al. 1997).
In the present simulations, the number of variables is very
large: N = 6 × 22400 (and thus the number of matrix elements
N2 ∼ 1.8 × 1010) but the number of nonzero elements is much
smaller (∼8×105). The PETSC solver handles the sparse matrix
efficiently by storing only nonzero elements and the simulations
based on this solver typically take about 160 minutes with the
time step used, on a PC with an Intel core i-5 CPU and 8 GB
RAM, to simulate wave propagation for a physical period of
16,000 s, which is the longest time period considered in the
present simulations.

3. ALFVÉN WAVE PROPAGATION,
REFLECTION, AND DAMPING

The simulations are conducted by using two types of driving
velocity in the neutral velocity Ux component at the base of the
photosphere (z = 0): either a rectangular pulse for examining
the wave propagation and reflection or a broadband perturbation
for studying the heating of the solar atmosphere.

3.1. Alfvén Wave Propagation and Reflection

We first examine the propagation and reflection of Alfvén
waves by using the driving velocity of a rectangular pulse with
a width in time of T = 80 s and neutral velocity Ux(z = 0) =
350 m s−1. The pulse rises to 350 m s−1 at t = 0 (without
time delay) and falls to 0 m s−1 at t = 80 s. In this run we
choose the ambient magnetic field B0 = 100 G. In Figure 2
we display altitude profiles of the magnitude of the plasma
velocity, stacked in time with the time difference between the
adjacent profiles being 40 s, to show the overall pulse evolution
in space and time. From this z − t plot we can see that during the
course of propagation the pulse experiences width broadening,
amplitude change, and shape distortion. Initially the wave packet
progressively moves upward with an increasing width. After the
wave front reaches about 1500 km at about 440 s, the amplitude
increases and the shape of the wave packet displays significant
distortion. Later, the trailing edge starts to retreat because of the
reflection. Thereafter a downward propagating wave packet is
seen.

Figure 2. Altitude profiles of the magnitude of the plasma velocity stacked in
time. The time separation of the profiles is 40 s. The ambient magnetic field
B0 = 100 G.

In order to examine in detail the evolution of the wave packet,
in Figure 3 we show altitude profiles of the x component of the
plasma velocity, Vx, and the perturbation magnetic field, Bx,
at four selected times. At t = 360 s the pulse reaches just
below 500 km with its original rectangular shape preserved
to a large degree. However, in the wake of the pulse, neither
the velocity nor the perturbation magnetic field is zero (more
clearly seen in panel (b)): there Bx has reversed the sign to
positive (the same sign as that of Vx). This is a signature of
reflected perturbations propagating downward (anti-parallel to
the background magnetic field). Note that for Alfvén waves
propagating parallel (anti-parallel) to the background magnetic
field, the velocity and magnetic field perturbations are in the
opposite (same) sign. At later times when the pulse has moved
further upward, e.g., at 443 s shown in panel (b), the pulse is
broader and its shape is distorted. The broadening is proportional
to the Alfvén speeds between the pulse front and the trailing
edge. Because the Alfvén speed increases with the altitude
and the pulse width in time (T = 80 s) corresponding to a
traveling distance, the pulse front propagates faster and faster
than the trailing edge so that the pulse is progressively widened.
The distortion of the pulse shape is caused by three effects.
First, if there were no reflection and dissipation, required
by conservation of the wave energy flux, the magnitude of
the velocity would increase with altitude as (ρt,0/ρt )1/4 and
the magnitude of the perturbation magnetic field would decrease
with altitude as (ρt/ρt,0)1/4 (Song & Vasyliūnas 2013), where
ρt,0 is the total mass density at z = 0. Hence the velocity
(magnetic field) amplitude within the pulse is larger (smaller)
at increasing altitudes. Second, at each point the pulse is the
superposition of the upward perturbation with that reflected
from the parts in front. Since the velocity and perturbation
magnetic field are in the opposite (same) sign for the Alfvén
waves propagating parallel (anti-parallel) to the background
magnetic field, the superposition of the upward and reflected
perturbations enhances (reduces) the magnitude of the velocity
(perturbation magnetic field). Such a change is more effective
at lower altitudes of the pulse because there is greater reflection
from the parts in front of it. Third, as will be shown in the next
subsection, the waves of frequencies above a critical frequency
fc (depending on the background magnetic field) are strongly
damped. The pulse starts with a steep front which consists
of perturbations of a broad frequency range (e.g., see panel
(a)). The damping of the high-frequency waves makes the front
less steep, i.e., the steep rising front becomes a gentle slope
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Figure 3. Altitude variations of the x (horizontal) component of the plasma velocity (solid line) and perturbation magnetic field (dashed line) at four selected times.
In each panel the scale for the velocity is on the left y-axis and the scale for the magnetic field is on the right y-axis.

(e.g., panel (b)). The length of the slope is approximately
given by VA,t/fc for the present case of B0 = 100 G, fc ∼
0.12 Hz (see panel (c) of Figure 9). In panel (b) of Figure 3, the
smoothed front slope starts from about z = 1000 km. Taking the
value of VA,t = 41 km s−1 at 1000 km, the length of the slope
is about 350 km, in agreement with that shown in panel (b) of
Figure 3. When the front moves to even higher altitudes, because
VA,t becomes very large, the front slope length is thus very long
so that, essentially, the front is flattened out as demonstrated
in panel (c). Further on in time, as shown in panel (d), having
had experienced reflection and damping, the upward pulse has
propagated outside the domain of interest, leaving a downward
propagating reflected pulse. However, the perturbations in the
wake of this reflected pulse are not zero (obviously non-zero
Vx although Bx seems to be zero due to the scale of the y-axis).
This is because the downward reflected pulse is also subjected to
reflection and the re-reflected perturbations propagate upward.

In order to identify where the strongest reflection occurs, we
compare, at given locations, Vx and Bx/

√
ρtμ0, which should

be nearly the same in magnitude for Alfvénic perturbations,
but opposite/identical in sign for purely upward (parallel to the
ambient magnetic field)/downward (anti-parallel to the ambient
magnetic field) propagation, based on the Walén relation V =
∓B/

√
ρtμ0 if neglecting damping of the waves (e.g., De Pontieu

et al. 2001; Song & Vasyliūnas 2011), where ∓ corresponds
to the propagation parallel and anti-parallel to the ambient
magnetic field, respectively. At the place of reflection (called
local reflection) the magnitude of the velocity/perturbation
magnetic field is either partially enhanced/reduced in the case of
partial reflection or becomes doubled/zero in the case of total
reflection. If the reflected pulse from the further ahead parts
of the pulse is strong enough, it is possible for perturbation
of the magnetic field to reverse the sign. Therefore, the relative
difference between Vx and Bx/

√
ρtμ0 (or Vy and By/

√
ρtμ0) can

be used to qualitatively determine the strength of the reflection.
In Figure 4 we display time variations of Vx and Bx/

√
ρtμ0 at

six altitudes. At low altitudes, like those shown in panel (a), we

see that Vx and Bx/
√

ρtμ0 have nearly the same magnitude with
an opposite sign for the upward pulse but with an identical sign
for the reflected pulse. The front of the upward pulse arrives
at 100 km at about t = 140 s and the trailing edge passes
100 km at about 220 s (80 s later). As shown in panel (a),
after the trailing edge passed (i.e., after ∼220 s), Bx reverses
the sign and Vx remains the same sign with a reduced (almost
zero) amplitude, which are the perturbations reflected from the
upward pulse that has moved above 100 km. It is seen that the
magnitude of the reflected pulse increases with time, indicating
that the reflection from higher altitudes becomes increasingly
stronger (note that reflection from higher altitudes arrives at
an observing location at a later time). The same feature of
the reflection is seen at higher altitudes, say at 400 km (panel
(b)). At higher altitudes, the reflected pulse comes back earlier
because of the larger Alfvén speed. In addition, the original
rectangular shape of the upward pulse is significantly distorted
with Vx (Bx/

√
ρtμ0) increased (decreased), from the pulse front

(earlier time) to the trailing edge (later time), in comparison to
the original rectangular shape. Since the upward and reflected
pulses are still separated in time, the deviation from nearly equal
magnitude of Vx and Bx/

√
ρtμ0 must be primarily caused by

local reflection. The stronger the local reflection is, the larger
the ratio |Vx/(Bx/

√
ρtμ0)| (or |Vy/(By/

√
ρtμ0)|, not shown)

is. Therefore, the waves experience partial reflection throughout
the chromosphere with increasingly stronger reflection at higher
altitudes.

The increase of the ratio |Vx/(Bx/
√

ρtμ0)| is more evident at
even higher altitudes. Panel (c) shows an example at 1200 km
in which the reflected pulse almost completely overlaps with
the upward pulse in time. The upward pulse (the velocity and
perturbation magnetic field in opposite signs) can still be seen.
At the front (earliest times) of the upward pulse the magnitude
of Bx/

√
ρtμ0 is much smaller than that of Vx, indicating

strong local reflection. Panel (d) displays the relation of Vx
and Bx/

√
ρtμ0 at the lower edge of the transition region (at

2130 km), where the magnitude of Bx/
√

ρtμ0 at the pulse front
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Figure 4. Time variations of Vx (solid lines) and Bx/
√

ρtμ0 (dashed lines) at six selected altitudes. Panels (a) and (b) have different scales on their y-axes from those
on the other four panels.

is almost zero so that the ratio |Vx/Bx/
√

ρtμ0| is larger than that
observed at the pulse front in panel (c), implying stronger local
reflection than that at 1200 km (panel (c)). Also noted is that
the reflected pulse is no longer identifiable, indicating that the
reflected pulse from the altitudes above is not strong enough to
reverse the sign of the perturbation magnetic field. Indeed panel
(e) shows that reduction in the magnitude of the perturbation
magnetic field at the altitudes above the transition region is
much weaker than that at 2130 km, indicating much weaker
local reflection. Therefore, we can conclude that the strongest
reflection occurs at the lower edge of the transition region.

The above conclusions are valid only if there is no contribu-
tion of the artificial reflection at the upper boundary (at 5000 km)
of the simulation domain. We then examine the relation of Vx
and Bx/

√
ρtμ0 in the upper ghost region (see panel (f)) where

the media is uniform and collisions are negligibly weak. We see
that those two quantities are almost exactly the mirror image
of each other, indicating the wave packet in the ghost region
propagating purely upward. Particularly, this means no notice-
able reflection from the upper boundary, an expected result from
the non-reflecting boundary conditions discussed in Section 2.
This is confirmed by checking the ratio of the plasma velocity
to the perturbation magnetic field at the upper boundary, where
we see an almost perfect Walén relation V⊥ = −B⊥/

√
ρtμ0

(data not shown), indicating nearly completely outgoing
perturbations with negligible reflection at the upper boundary.
Also note that the greater magnitudes of Vx and Bx/

√
ρtμ0 are

due to the smaller density in the corona.

3.2. Chromospheric Heating

Having examined the Alfvén wave propagation and reflection
in the above section, we now turn to calculating the rate of
the chromospheric heating by the Alfvén waves. While a short
pulse is better for illustrating the propagation and reflection,
a continuously oscillating driving velocity is more suitable to
examining wave heating. We thus conduct the simulations with
a driving velocity Ux at z = 0 with a broadband time series
specified by

Ux(t, z = 0) = Vb

{
s∑

k=0

(ωk/ωp)5/6 cos(ωj t + φj )

+
m∑

j=s+1

(ωj/ωp)5/6 cos(ωk t + φk)

}

, (11)

where s and m are the number of frequencies (in logarithmic
steps) below and above peak angular frequency ωp, respectively,
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Figure 5. Time variation (upper panel) of the driving velocity Ux at z = 0 for
a broadband perturbation specified by Equation (11) for B0 = 50 G, and the
corresponding energy flux spectrum (lower panel). The dashed line in the lower
panel represents the power law variation (f/2fp)−5/3 for f > 2fp = 3.3 mHz
and (f/2fp)5/3 for f < 2fp .

Vb is an amplitude coefficient to make the time averaged en-
ergy flux, at z = 0, S0 = ρtVAt 〈U 2

x (t, z = 0)〉 = 2 ×
107 erg cm−2 s−1, where VAt is the Alfvén speed at z = 0
calculated with the total mass density ρt and 〈〉 represents
time average over the physical period simulated, and φk, φj =
2π rand()/(s + m) is the random phase with rand() being a ran-
dom number taken from [0, s+m]. Note that only approximately
half of the energy flux, or 107 erg cm−2 s−1, propagates upward
and another half propagates downward into the lower ghost re-
gion. In the simulations we choose s = 10 and m = 590. The
lowest and highest frequencies are f0 = ω0/2π = 1 mHz and
fm = ωm/2π = 10 Hz, respectively, and fp = ωp/2π =
1.65 mHz.

The simulated plasma and neutral velocities, and perturbation
magnetic field are used to calculate the electric field and current
via Equations (4) and (5). Then the heating rate can be evaluated
with Equation (6). We consider four cases with different ambient
magnetic fields: B0 = 10, 50, 100, 500 G. The time variations
of Ux at z = 0 and associated energy flux spectra are shown
in Figure 5 for the case of B0 = 50 G. The magnitude
of the velocity is around 1 km s−1 with the peak at about
1.8 km s−1, within the range of the observed photospheric
oscillation velocity (Avrett & Loeser 2008). The energy flux
spectrum of the driving velocity is peaked at 3.3 mHz even
though the spectrum of the driving velocity itself is peaked
at fp = 1.65 mHz. This is because a Fourier transform of
U 2

x (z = 0) produces doubled frequency components, which will
be discussed in more detail later. The spectrum at frequencies
higher than 3.3 mHz is close to a power spectrum with a
power index of n = −5/3 (dashed line) while at frequencies
lower than 3.3 mHz approximately follows a power law of a
power index of n = 5/3.

Figure 6. Variations of the heating rate with time and altitude. The ambient
magnetic field is B0 = 50 G.

Figure 7. Altitude distribution of the time-averaged frictional (solid line) and
Joule (dashed line) heating rates for the ambient magnetic field B0 = 50 G.

Figure 6 shows the heating rate q as a function of time and
altitude for the case of B0 = 50 G. Above the photosphere the
heating rate is zero before the arrival of the perturbations from
the source. The perturbation front reaches 3000 km at about
886 s in this case. It is seen that the heating is primarily at
altitudes below about 800 km with the strongest heating below
about 400 km, consistent with the result from the theoretical
study of Song & Vasyliūnas (2011). Above the transition region
the heating rate is more than 10 orders of magnitude smaller
because of the negligibly small collision frequencies and the
weaker available wave energy flux. Note that the present study
does not invoke anomalous effects such as turbulence, which
may produce higher heating rates in the corona. The local
heating rate is about 0.1 erg cm−3 s−1 or larger at the lower
chromosphere and above 10−2 erg cm−3 s−1 in the middle and
high altitude chromosphere. Such values satisfy the heating
rates required to balance the radiative energy loss in the quiet
chromosphere (e.g., Withbroe & Noyes 1977; Vernazza et al.
1981). The heating rates show structures associated with the
upward and reflected waves. The stronger (weaker) heating rates
correspond to the larger (smaller) magnitude of the oscillating
driving velocities shown in the upper panel of Figure 5.

As indicated by Vasyliūnas & Song (2005), in partially
ionized plasmas the heating is due to frictional dissipation
caused by the ion–neutral collisions and Joule dissipation caused
by the electron collisions with other species. In the case of
the chromosphere, the Joule dissipation dominants the lower
chromosphere because of large electron collision frequencies.
This is confirmed by comparing the altitude distribution of the
frictional and Joule heating rates shown in Figure 7. The heating
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Figure 8. Altitude distribution of the time-averaged heating rate for the ambient
magnetic field B0 = 10, 50, 100, and 500 G.

rate at each altitude is averaged over the time period from
the arrival of the perturbations to the end of the simulation
(in this case 2500 s). It is seen that the frictional heating
rate is much smaller than the Joule heating rate below about
600 km whereas the Joule heating rate is about 0.1 erg cm−3 s−1

or higher at low altitudes. The frictional heating becomes
dominant only at higher altitudes but with a heating rate less
than 10−3 erg cm−3 s−1. Therefore, if a heating mechanism,
resulting from the collisional dissipation of the Alfvén waves
in the chromosphere, operates primarily at high altitudes, like
that of Leak et al. (2005), the derived heating rate would be
considerably underestimated because the dominant heating in
the region is only frictional heating, which is more than two
orders of magnitude weaker than the Joule heating at the lower
chromosphere.

Figure 8 displays the altitude distribution of the heating rate
for B0 = 10, 50, 100, 500 G, averaged over the time in the
same manner as in Figure 7. For the cases when the ambient
magnetic field is less than 100 G, the heating rates in the lower
chromosphere (below about 350 km) are ∼0.1 erg cm−3 s−1 or
higher and then rapidly decreases with the altitude. The weaker
the ambient magnetic field the larger the heating rate in the
lower chromosphere (below about 500 km). At higher altitudes,
however, the heating rate is larger for the stronger background
magnetic field. This is because there is little wave energy left
to heat the upper chromosphere due to strong wave damping
for the weaker ambient magnetic field at low altitudes (Song &
Vasyliūnas 2011).

Figure 9 displays spectra of the energy flux (Poynting flux
Sz = E⊥ × B⊥/μ0) at 3100 km (in the upper ghost region) for
the four different ambient magnetic fields. Here the energy flux
spectrum is defined as the magnitude of a Fourier transform
of Poynting flux. Note that there is essentially no reflection
in the upper ghost region (including the top boundary) as
shown in Section 3.1. Therefore, the energy flux at 3100 km
represents that of the purely outgoing (transmitted) waves.
The first feature we note is that each spectrum has an upper
cutoff frequency because of the complete damping of the
waves above that frequency. Specifically, the cutoff frequencies
are about 0.014 Hz, 0.1 Hz, 0.4 Hz, and 0.7 Hz for B0 =
10, 50, 100, 500 G, respectively. Second, the remaining spectra
deviate from a power law (power index −5/3, represented by
dashed lines), starting from a frequency that depends on the
ambient magnetic field, with progressively lower energy fluxes
at higher frequencies compared to the dashed lines. This is
caused by the strong but not total damping of the waves at
those frequencies. This feature cannot be explained by simple
reflection alone because the Alfvén waves are dispersionless

(a) (b)

(c) (d)

Figure 9. Energy flux spectra of waves transmitted to the corona (calculated at z = 3100 km; see text for details) for the ambient magnetic field
B0 = 10, 50, 100, and 500 G. The dashed line in each panel represents the power law variation (f/fp)−5/3 for f > fp = 3.3 mHz and (f/fp)5/3 for f < fp .
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so that the reflection should not be strongly dependent on
frequency. The third feature is that compared to the energy
flux density at the driving location (e.g., see panel (b) and
lower panel of Figure 5), the energy flux density of the waves
transmitted into the corona is one or more orders of magnitude
lower because of wave damping and reflection. For B0 = 10 G,
because most waves are damped before reaching the transition
region, reflection is less important. The fourth feature is that for
the stronger ambient magnetic fields the spectra are flatter at the
low frequency end (but above fp). In these frequencies, damping
is weak and reflection dominates at the transition region. In such
cases, at any frequency, the perturbation is the superposition of
the upward and reflected (and also re-reflected) waves. A Fourier
transform of the energy flux at a given location consists of terms
such as cos(ωt + φ1) cos(ωt + φ2), which leads to a component
of doubled frequency even in a linear theory, where φ1 and φ2
are the phases of the upward and reflected waves at this height.

4. CONCLUSIONS AND DISCUSSION

In this study we present self-consistent solutions of plasma
and neutral momentum equations and Maxwell’s equations for a
one-dimensional model of the chromosphere with incorporation
of the Hall term, strong electron–neutral, electron–ion, and
ion–neutral collisions. Treating the plasma and neutrals as two
separate fluids allows us to explicitly calculate the frictional
heating rate, which is shown to be much smaller than the
Joule heating rate in the lower chromosphere. We simulate the
propagation of a rectangular Alfvénic pulse from the base of
the photosphere propagating to the corona. It is shown that the
Alfvén waves are subject to diffused reflection throughout the
chromosphere with increasingly stronger reflection at higher
altitudes. The strongest reflection occurs at the transition region
and the reflection in the corona is weak without considering
anomalous effects such as turbulence and resonances. For a
given wave packet, its width increases with the altitude because
of the increasingly larger Alfvén speed at the front of the wave
packet. The shape of the upward pulse is also distorted by the
reflection and wave damping.

We apply broadband perturbations with a power law energy
flux spectrum (power index close to −5/3, assuming that be-
low the photosphere the flow is well-developed turbulence) as
the photosphere driving source to evaluating the heating of the
solar atmosphere by the Alfvén waves. It is found that the heat-
ing is concentrated below about 400 km. The Joule dissipation
plays a dominant role in Alfvén wave heating of the chromo-
sphere. The heating rate in the lower chromosphere is about
0.1 erg cm−3 s−1 or higher when the ambient magnetic field
is weaker than 100 G, which is sufficient to balance the radia-
tive loss in the lower chromosphere. At altitudes below about
500 km the weaker the ambient magnetic field B0 is, the stronger
the heating is. At higher altitudes the reverse is true, but the
height-integrated heating rate is always larger for the weaker
background magnetic field. Waves above a certain frequency
(depending on B0) are strongly damped and waves above a
cutoff frequency (also dependent on B0) are even completely
damped. The reflection also results in a frequency doubling ef-
fect that causes transfer of the energy from lower frequencies to
higher ones so that wave damping (heating) is possibly stronger
compared to that without reflection. Due to the reflection and
strong damping, the wave energy flux transmitted to the corona
is at least one order of magnitude smaller than that of the driving
source. The Alfvén wave heating in the corona through inter-
species collisional dissipation is negligible since the collisions

in the corona are weak and the energy flux transmitted from the
photosphere to the corona is small. Because the corona is nearly
fully ionized, the radiation loss becomes small and the energy
required for further temperature increase is also small.

The simulations show that if the convective flow at the base
of the photosphere is large enough to carry the energy flux
as observed, strong heating is possible, particularly in regions
of weaker background magnetic fields. Previous theories and
interpretation of observations may have overlooked the impor-
tance of the heating contribution from weaker field regions. One
should not use the observed wave power to determine the heat-
ing rate because when the damping is high, the heating is strong
and the observed wave power can be low.

In the present simulations we consider a simple one-
dimensional geometry with spatial variation only along the ver-
tical direction. With such a simple geometry we provide an
essential description for the Alfvén wave propagation, reflec-
tion, and damping in the solar atmosphere. Particularly, we are
able to unambiguously determine the wave reflection within
the system by imposing two ghost regions and non-reflecting
top boundary conditions to avoid the effects of artificial reflec-
tions from the simulation domain boundaries. The effects due
to oblique propagation of the Alfvén waves are ignored and
will be considered in the further development of our simulation
model for two-dimensional/three-dimensional geometry. Nev-
ertheless, we do not expect the results regarding the heating to
significantly change in the case of oblique propagation because
the group velocity of the Alfvén waves is always aligned with
the magnetic field.

In the chromosphere above a certain altitude the Hall term
is larger than the resistive term. While the Hall effect does
not directly contribute to heating the chromosphere, it modifies
the electric field and thus the perturbed magnetic field through
Faraday’s law. This in turn affects the plasma velocity through
momentum Equation (1). Eventually, the heating in the chro-
mosphere is modified by the Hall effect. Therefore, the Hall
term must be retained to correctly account for the plasma (and
also the neutral) dynamics as well as the heating of the chro-
mosphere. This may be among the possible reasons why Leak
et al. (2005) concluded that the heating is concentrated between
1000 km and 2000 km since the Hall term in their study was
neglected.

The governing equations are strongly coupled through mutual
collisions between the plasma and neutrals, particularly at low
altitudes. This makes the equations strongly stiff which requires
an implicit difference method to efficiently solve them. Other-
wise very small time steps (<10−8 s) are required in order to
obtain stable solutions if an explicit difference scheme is used.
We have developed an implicit numerical framework that over-
comes the stiffness and can use large time steps without losing
the stability and accuracy. This implicit framework will allow us
to develop efficient two-dimensional/three-dimensional models
for modeling solar atmosphere dynamics.

This study was supported by the NSF grant AGS-0903777 and
NASA grant NNX12AD22G to the University of Massachusetts
Lowell.
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