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Terminal Impedance and Antenna Current
Distribution of a VLF Electric Dipole

in the Inner Magnetosphere
Timothy W. Chevalier, Umran S. Inan, Fellow, IEEE, and Timothy F. Bell

Abstract—The current distribution and input impedance of an
electric dipole antenna operating in a cold magnetoplasma at very
low frequency (VLF) is determined through numerical simulation.
A full wave solution of Maxwell’s equations using a finite-differ-
ence frequency-domain (FDFD) method is implemented to simu-
late electromagnetic wave propagation in this highly anisotropic
medium. The classical perfectly matched-layer (PML) boundary
condition is found to exhibit instabilities in the form of nonphys-
ical wave amplification in this environment. To circumvent these
difficulties, a PML is developed that is tailored to the cold plasma
environment at VLF frequencies. It is shown that the current dis-
tribution for antennas with length 100 m is approximately trian-
gular for magnetospheric conditions found at � � and � �

in the geomagnetic equatorial plane. Calculated variations of input
impedance as a function of drive frequency are presented for two
case studies and compared with predictions of existing analytical
work.

Index Terms—Antenna, plasma.

I. INTRODUCTION

E LECTRIC dipole antennas are commonly used in space
plasmas with applications that range from radio frequency

probing of the magnetosphere to plasma diagnostics [1]–[4].
The radiation pattern and efficiency of an antenna is directly
related to the distribution of currents flowing along its surface.
For electrically short dipole antennas operating in a free-space
environment, the current distribution is known to be triangular
[5, pp. 40–42]. For an antenna operating in a magnetoplasma
however, the situation is more complex with single-frequency
wavelengths that vary by several orders of magnitude as a result
of the high anisotropy of the medium.

The coupling of antennas with a magnetized plasma has been
an area of active research for decades. The work of [6] per-
formed some of the first analytical studies concerning the be-
havior of electric dipole antennas in a cold magnetoplasma. For-
mulas for the input impedance of short cylindrical dipoles of
arbitrary orientation with respect to the background magnetic
field using quasi-electrostatic theory were derived assuming a
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lossy (i.e., collisional) plasma. The analysis was limited to elec-
trically short antennas (relative to a free-space wavelength) so
that a triangular current distribution along the length of the an-
tenna was assumed to be valid. In addition, Balmain [6] com-
pares his theoretical results with experiment for combinations
of neon and argon plasmas obtaining good agreement. Subse-
quently, Balmain in [7] and [8] provides nice reviews of the rele-
vant literature to date involving the status of antenna research for
a variety of plasma environments and antenna types including
dipole and loop antennas. These review papers cover such topics
as impedance, radiation, resonances, and nonlinearities for both
isotropic and anisotropic plasmas. Unfortunately, very little re-
search up until the review paper by [8] included antennas op-
erating in a collisionless magnetoplasma at very low frequency
(VLF) with the dominant research on the subject having been
performed by [9]–[14].

In [9], closed-form analytical expressions for the radiation re-
sistance of electric dipole antennas operating in a cold magne-
toplasma were developed using a full wave approach. The fre-
quency range considered included whistler-mode frequencies
(i.e., below the electron gyrofrequency) well above the lower
hybrid resonance (LHR) frequency denoted as . Antenna
orientations both parallel and perpendicular to the background
magnetic field were considered in this work assuming an elec-
tron–proton plasma. In addition to the work of [9], Wang and
Bell in [10] extend their previous analysis to include the fre-
quency range below and calculate the radiation resistance
for electric-dipole antennas of arbitrary orientation with respect
to the background magnetic field. In addition to highlighting the
fact that although Balmain’s electrostatic approximation in [6]
is valid for frequencies well above , the authors of [10]
point out that this same electrostatic theory predicts a purely
imaginary radiation resistance below . Furthermore, they
conclude that more power will be radiated from a dipole an-
tenna oriented perpendicular to the background magnetic field
since the propagating modes launched from this orientation pro-
vide a much higher radiation resistance with efficiencies greatly
exceeding those found for the same antenna in free space and
provide a frequency range for which their full wave theory is
valid for a 100-m antenna; this range being and

for magnetospheric locations corresponding to
and , respectively, where the parameter repre-

sents the radial distance in units of one Earth radius, from the
center of the Earth to the position of the magnetic field line at
the magnetic equatorial plane. In the same year, [11] provides
formulas for the input impedance of VLF antennas operating in
a magnetoplasma.
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In following work, formulas for the radiation patterns of ar-
bitrarily oriented electric and magnetic dipoles in a cold col-
lisionless magnetoplasma were derived [12]. Expressions for
the power patterns were given for various values of driving fre-
quency and magnetospheric location. The authors of [12] con-
clude in this work that the refractive index surface that governs
wavelength and propagation direction dominates the focusing of
the radiation which changes from the resonance cone direction
(propagation direction in a cold magnetized plasma for which
the refractive index approaches infinity), for frequencies that are
a factor of 0.75 the electron gyrofrequency to a pencil beam pat-
tern focused along the static magnetic field for lower frequen-
cies that lie within the whistler-mode regime. In [13], Wang and
Bell examine the radiation characteristics of an electric dipole
at VLF frequencies in a warm magnetoplasma by adding a fi-
nite electron temperature effect incorporated through the addi-
tion of a scalar pressure term in the cold plasma equations, a
commonly used practice at this time [8]. They assert that for fre-
quencies above , propagation characteristics may be sig-
nificantly altered since the thermally modified whistler mode
can propagate at angles beyond the resonance cone, however,
for frequencies below , the refractive index surface is ba-
sically unmodified while noting radiation efficiencies for the
perpendicular antenna greater than at least 10% over the par-
allel antenna for most cases. In addition, the authors of [13]
omit the nonlinear sheath (region of nonneutrality that is quasi-
electrostatic in nature surrounding a conductor immersed in a
plasma [15]) problem assuming low-voltage antenna operation
and use a Fourier decomposition of the wave and plasma equa-
tions of motion to solve the system of equations. During the
same period, studies of whistler-mode radiation patterns of elec-
tric dipole antennas in a laboratory setting were performed [16]
providing some reassurance to the findings in [12]. Even with
all of these advancements, the primary underlying assumption
made in [9]–[14] was that the current distribution along the
length of the antenna was assumed to be triangular for the for-
mulas derived in these works. Some of the more recent ana-
lytical work performed on the subject is that of [17]. In this
paper, the input impedance of short dipole antennas operating at
high frequencies (HF) in an ionospheric plasma was compared
assuming both triangular and exponential current distributions
along the length of the antenna. As in [6], Nikitin and Swenson
[17] used a quasi-electrostatic approach to determine the ter-
minal properties for an antenna with orientation parallel to the
static magnetic field. The impedance values in [17] demonstrate
good agreement with the results of [6] for frequencies between
the electron gyrofrequency and upper hybrid frequency inclu-
sive but for highly collisional ionospheric conditions found at a
100-km altitude, which are not applicable to studies at VLF in
a collisionless magnetospheric environment.

Simulation work involving antennas operating in a magne-
tized plasma environment is scarce with [18] constituting some
of the first modeling attempts on the subject. The authors of
[18], utilizing a warm plasma model, determined the terminal
impedance of very short dipole antennas in a collisional iono-
spheric plasma in the absence of an effective boundary condition
using the finite-difference time-domain (FDTD) method. Their
model assumes an incompressible Maxwellian fluid for the elec-
trons using the first two moments of the Boltzmann equation for
electrons only while the ions and neutrals remain stationary. As

in [13], a scalar pressure is assumed for the electrons. Current
distributions and impedance values are determined for a 1-m
linear antenna with results compared once again to Balmain’s
electrostatic model [6] with good agreement. The authors cir-
cumvent undetermined boundary condition instabilities by ter-
minating the simulations before reflections from the boundary
can contaminate the solution results.

The topic of antenna–plasma interactions has received re-
cent attention with the renewed interest in the study of various
mechanisms for the precipitation (removal) of energetic elec-
trons from the Earth’s radiation belts [19]. The work of [19]
concludes that in situ injection of VLF whistler-mode waves
can reduce the lifetime of 1500-keV electrons by a factor of
two, thereby reducing the radiation damage to satellites that
orbit within this region of space. The primary motivation for
this work is to quantify the requirements for controlled precip-
itation of radiation belt particles using space-based VLF trans-
mitters. The coupling of the antenna to its environment is of
primary importance in this context with coupling occurring in a
number of distinct regions. Close to the antenna exists a plasma
sheath, which directly affects the terminal impedance properties
(and hence tuning parameters) of the antenna. Inside the sheath
region, electrostatic effects are dominant and particle energiza-
tion may be significant for large applied voltages. Beyond this
region, the electromagnetic waves are of a low enough inten-
sity such that the environment can be well described by a cold
plasma treatment.

To optimally inject VLF waves and thereby maximize ener-
getic electron precipitation, it is necessary to determine the ra-
diation pattern of the antenna. Though the antenna tuning prop-
erties are dominated by the nonlinear electrostatic sheath in the
immediate vicinity of the antenna, the far-field pattern is de-
termined by the current distribution along the antenna. As clo-
sure relations for the infinite set of fluid moments continue to be
pursued and particle-in-cell (PIC) codes remain intractable for
near- and far-field antenna simulations of collisionless magne-
toplasmas [20], our goal is not to provide detailed analysis of
nonlinear sheath dynamics or wave–particle interactions but to
provide methods for treating the difficulties inherent in model
formulations involving the solution of Maxwell’s equations in
a collisionless magnetized plasma environment within the VLF
range. In this paper, we determine the current distribution and
terminal impedance properties of a dipole antenna in the ab-
sence of a sheath using a cold plasma treatment. As such, our re-
sults can be viewed as being particularly applicable to the cases
in which the drive voltages applied on the antenna are relatively
small compared to the background plasma potential given by
the relation where is the charge of an elec-
tron, is the potential, and the quantity represents the
thermal energy of the particles. In this context, our results con-
stitute an extension of the work of [9]–[11], who also considered
the problem in the absence of a sheath and analytically deter-
mined the terminal impedance parameters under the assumption
of a triangular current distribution. For large applied voltages,
however, the nonlinear sheath dynamics would need to be ad-
dressed and is beyond the scope of this paper.

Unlike the work of [9]–[11], however, we make no assump-
tions about the form of the current distribution. Instead, the cur-
rent distribution and the terminal properties of the antenna are
determined through simulation in a fully self-consistent manner.
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Because past analytical formulations are only valid for simple
dipole geometries in a linear environment, we use numerical
methods that are not subject to these constraints. Our numer-
ical approach allows for a relatively straightforward extension
into regimes for which there are no analytical solutions such as
inhomogeneous plasmas or more complex antenna designs.

FDFD is the frequency-domain counterpart of the well-estab-
lished FDTD technique [21]. Though literature on the applica-
tion of FDFD to wave propagation in a magnetoplasma is scarce,
there have been several applications of the FDTD method to the
subject of wave propagation through a plasma, which are di-
rectly applicable to simulation using the FDFD method.

The flexibility and generality of the FDTD method accounts
for its acceptance as the method of choice for electromagnetic
wave interaction within complex media [21]. Such media in-
cludes plasmas, and more recently, metamaterials with [22] pro-
viding an analysis of anisotropic magnetic materials for antenna
applications in the very high frequency (VHF) and ultrahigh fre-
quency (UHF) bands. As it pertains to the study of plasmas,
Cummer [23] provides a detailed comparison of the methods
used to date; however, the works mentioned deal strictly with
isotropic plasmas. The authors of [24] address the problem of
electromagnetic wave propagation inside a cold magnetoplasma
using FDTD but do not address the application of absorbing
boundary conditions (ABCs) for the reflectionless absorption of
outgoing waves. In this paper, we show that ABCs are one of the
most difficult and pervasive issues underlying the simulation of
electromagnetic wave propagation in a magnetoplasma.

Since the introduction of the perfectly matched layer (PML)
[25], it has been used extensively in the field of computa-
tional electromagnetics due to its superiority over other types
of ABCs. The PML, however, suffers from instabilities in
the presence of some anisotropic media such as orthotropic
materials as discussed in [26]. As demonstrated in [26], this
instability is not unique to a particular system of equations;
rather, it is inherent in all PML derivations since they share the
same underlying structure. In this paper, we show that this nu-
merical instability is present within the context of magnetized
plasma simulations that need to be used to solve Maxwell’s
equations with a PML boundary condition. Also, this instability
is independent of the method used for the plasma dynamics
or the type of time integration scheme used. Thus, PIC, fluid,
time, and frequency-domain methods are all affected by the
presence of this numerical instability.

The purpose of this paper is to demonstrate the complexity
involved in numerically modeling the near-field properties of
electric dipole antennas operating in a cold, collisionless, mag-
netized plasma specifically emphasizing some of the numerical
challenges in connection with PML boundary conditions and
wave propagation in such media. We present comparisons of
the results of our simulations with available analytical results
for both the current distribution and input impedance to provide
confidence in our methods as well as affirm assumptions made
in past analytical work.

II. THEORETICAL FORMULATION

The cold plasma description we use for our FDFD modeling
combines the first two linearized moments of Vlasov’s equation

with Maxwell’s equations. The final system of equations repre-
senting our cold plasma model is given by:

(1a)

(1b)

(1c)

where and are the wave electric and magnetic fields, and
, , , , and are the current density, collision frequency,

number density, charge, and mass of species . Equation (1c)
represents a simplified version of the generalized Ohm’s law.

For the purpose of this work, the dipole antennas are taken to
be located between and near the magnetic equato-
rial plane corresponding to distances of approximately two and
three Earth radii from the center of the earth. The plasma in this
region is fully ionized and is composed of hydrogen ions and
electrons. At , the plasma and gyrofrequencies are taken
to be 401 kHz and 110 kHz, respectively [1]. Be-
cause the densities of neutrals and electrons at this location are
low, we assume a collisionless environment.

III. SIMULATION PROPERTIES

A. Computational Mesh Setup

The numerical mesh used for the cold electromagnetic
plasma simulation is based on the traditional staggered/inter-
leaved FDTD mesh for locations of electric and magnetic fields
[27]. The currents described by (1c) are spatially colocated
with their electric field counterpart. Care must be taken in the
placement of the components of the current . Recent papers
on the subject such as [24] propose collocating all components
of the currents at the corner of the electric field Yee cell. Un-
fortunately, such positioning of the currents produces spurious
electrostatic waves, which possess a spatial wavelength on the
order of the mesh cell size. Such numerical waves are a result
of the spatial averaging of the currents and are explained as
follows.

Referring to Fig. 1, which represents the computational grid
of [24], the locations of the electric fields are 1/2 a cell width
away from the corresponding components of the current density

described by (1c). Spatial averaging of a field value is neces-
sary when the field quantity at a given location on the computa-
tional mesh is desired but not available. For instance, the update
equation for the electric field described by (1a) requires values
of the current density . Because the components of are not
colocated with the corresponding components of electric field
on the mesh, a suitable average must be made, i.e., averaging

at the location of . The same type of process holds true
for the current density update equations presented by (1c). Re-
moving all references to time, the grid of [24] requires the aver-
aging given by (2a)–(2c) to spatially colocate the electric field
components of with the corresponding component of the cur-
rent density given by (1c)

(2a)
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Fig. 1. Two-dimensional grid of Lee and Kalluri.

Fig. 2. One-dimensional time-domain simulation in cold plasma depicting
nonphysical electrostatic wave formation on spatially averaged mesh versus
colocated mesh taken at times � � ����� and � � ������ where � represents
the period of a 20-kHz sine wave. (a) Colocated E-field at time � � ����� .
(b) Colocated E-field at time � � ��	�� . (c) Spatially averaged E-field at time
� � ����� . (d) Spatially averaged E-field at time � � ��	�� .

(2b)

(2c)

For frequencies , , propagation in direc-
tions orthogonal to the static magnetic field is not supported in
a cold plasma. This fact is verified with reference to Figs. 7 and
8, as further discussed in Section III-F. Using a Cartesian coor-
dinate system and assuming a directed static magnetic field,
any electric field components excited in the or direc-
tion subsequently produce currents in that respective direction
through the spatial averaging of (2a). The recursive process of
spatial averaging leads to nonphysical electrostatic waves (of
numerical origin), which propagate in a direction orthogonal to
the static magnetic field as shown in Fig. 2.

Fig. 3. Two-dimensional grid used in present model.

The formation of these nonphysical wave modes is most
easily demonstrated in the time domain. As such, Fig. 2 rep-
resents a 1-D time-domain simulation showing the formation
of nonphysical electrostatic waves resulting from the spatial
averaging of (2a). A 20-kHz sinusoidal source is placed
in the center of the space in Fig. 2. The medium is a cold
plasma with properties consistent with those found at .
The horizontal axis represents the dimension, with a static
magnetic field present in the direction. Because there are
neither propagating nor evanescent wave modes supported in
this scenario, we would expect to see only the source point
oscillating in a sinusoidal fashion. Fig. 2(a) and (b) represents
simulation snapshots at and , respectively,
for a mesh in which is colocated with . Fig. 2(c) and (d)
represents a mesh in which and are staggered in space
per (2a). It is seen that the collocation of and found in
Fig. 2(a) and (b) correctly captures the physics (with only the
source point oscillating in time) while the staggered mesh of
Fig. 2(c) and (d) produces an electrostatic wave (possessing no
associated magnetic field) that propagates along the direction.
In fact, the only frequency range that supports electrostatic
wave propagation in a cold plasma environment is that associ-
ated with the extraordinary mode. This mode that is discussed
in Section III-F in conjunction with Z-mode propagation is
denoted by “ ” in Fig. 5, which resides above the plasma
frequency; a frequency well above the 20-kHz source, being
401 kHz at in the equatorial plane. Thus, the oscillations
seen in Fig. 2(c) and (d) must be nonphysical in nature.

To prevent the formation of these nonphysical waves, the
components of current density for each species are colocated
with their electric field counterpart as shown in Fig. 3 and ap-
plied to our FDFD formulation. Although our model utilizes
spatial averaging, the averaging does not appear to create non-
physical modes.

B. Frequency-Domain Technique

The use of frequency-domain techniques over those based
on time integration (FDTD, for instance) allows for the accu-
rate modeling of spatial structures that are orders of magnitude
smaller than a wavelength without an appreciable increase in
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computation time. This feature is a major advantage in our case,
considering that the wavelengths for VLF waves below the elec-
tron gyrofrequency considered in this paper range from meters
to megameters in the same simulation due to the high anisotropy
of the refractive index. Refractive index surfaces will be dis-
cussed later in Sections III-E and III-F.

Our model uses the portable expression template for scien-
tific computing (PETSc) framework [28], [29] for both its em-
bedded parallelism and integrated linear and nonlinear solvers,
which are integral parts of the frequency-domain methods used.
The FDFD technique solves for the sinusoidal steady-state re-
sponse of a single-frequency excitation. To solve our system of
(1a)–(1c), we must transform them into the frequency domain
making the following substitution for the time derivative oper-
ator: . This results in

(3a)

(3b)

where represents the conductivity matrix in the relation
resulting from the transformation of (1c) into the frequency

domain. represents the identity matrix and
is the electron gyrofrequency where represents the magni-
tude of the static magnetic field.

Frequency-domain methods require a large complex matrix
inversion. Normalization of the equations is especially impor-
tant in preventing an ill conditioned system. All dependent
simulation variables are thus normalized using appropriate
scales. Due to the size of the problem, the matrix is inverted
using an iterative Krylov subspace method in parallel. The type
of Krylov method used in this simulation is the generalized
minimum residual (GMRES) along with an additive Schwarz
(ASM) preconditioning matrix [28], [29].

C. Boundary Condition Instabilities

A variation of the PML originally proposed by [25] is imple-
mented to absorb outgoing electromagnetic radiation. The PML
used in this paper is a frequency-domain adaptation of the con-
volutional PML (CPML) based on [30]. Because virtually all
PML derivations begin with a frequency-domain representation,
the implementation into our model is straightforward.

Regardless of the PML type used, all PML derivations follow
the same basic principle. This principle is to match the tangential
component of the wave numbers at the computational/PML in-
terface. This matching is continued throughout the layers of the
PML. Attenuation is realized with the addition of an artificial
imaginary component of the wave normal vector . In most ap-
plications of computational electromagnetics, the PML accom-
plishes this task by absorbing the wave function in the direction
orthogonal to the PML interface [25].

Two recent papers that discuss issues with the PML related
to our study are [26] and [31]. The work of [26] highlights the
fact that for a wave in which the group and phase velocities are

antiparallel at the PML interface, the wave experiences expo-
nential growth inside of the PML. Becache et al. [26] demon-
strate this problem in orthotropic media, but do not present any
recommendations as to the resolution of this dilemma.

Cummer [31] examines the properties of a traditional PML
in the presence of negative index of refraction materials (NIM).
Within a material that possesses a negative index of refraction,
antiparallel group and phase velocities are ubiquitous at a par-
ticular frequency within the computational space. This condi-
tion exists at all PML interfaces. In the case of [31], a relatively
simple fix is incorporated in the model to allow for proper ab-
sorption of outgoing waves. Unfortunately, this method does not
work in a magnetized plasma, since the switch of [31] is only
frequency dependent, while, as shown below, in a cold magne-
tized plasma, antiparallel group and phase velocity behavior is
both direction (i.e., -vector) and frequency dependent.

Using the stretched coordinate version of the PML, first de-
rived in [32], we now show the manifestation of the PML region
instability for a cold magnetized plasma. This instability is not
just a cold plasma phenomena, but exists in any electromagnetic
plasma model that utilizes a PML as an absorbing boundary
condition.

D. PML Derivation

The derivation of the PML is well documented and can be
found in numerous papers and books, including [25] and [21].
A brief description of the PML suffices to illustrate the problem
at hand. In a conventional stretched coordinate PML, the nabla
operator used in Maxwell’s equations is replaced by the nabla
operator given by

(4)

where , , and denote stretching variables in their respec-
tive coordinate directions [32]. The form of the stretching vari-
able is given by

(5)

where represents radian frequency and describes an atten-
uation constant that exists only within the PML. Denoting the
region inside the computational domain as region 1 and the inte-
rior of the PML as region 2, and assuming planewave solutions,
the relationship between the wave numbers inside and outside
the PML are given by

(6)

For simplicity, we assume a uniform planewave in 1-D
propagating in the direction. The wave number admits
planewave solutions inside of the PML given by

(7a)

or

(7b)



CHEVALIER et al.: TERMINAL IMPEDANCE AND ANTENNA CURRENT DISTRIBUTION OF A VLF ELECTRIC DIPOLE 2459

Fig. 4. Free-space isotropic refractive index surface.

Becache et al. [26] state that an instability develops if, for a
given mode, the perpendicular components of the -vector and
group velocity vector are antiparallel at the entrance of the
PML. This result can be ascertained by examination of the ex-
ponential attenuation term in (7b). If a wave possesses a compo-
nent of group velocity in the direction and component of

in the direction, the fields exponentially grow inside the
PML as opposed to the exponential decay as desired.

To illustrate this concept, we make use of the refractive index
surfaces for propagation in both free space and a cold magne-
tized plasma and discuss the differences in the context of the
PML. The refractive index surface describes the relative direc-
tions of and .

E. PML in Free Space

In free space, the refractive index surface is a sphere of unit
radius and its cross section is shown as the circle surrounding
the antenna in Fig. 4. The in the interior of the sphere repre-
sents the initial wave launched from the antenna and the group
velocity direction is normal to the refractive index surface. It
is readily seen from the free-space refractive index surface of
Fig. 4 that all components of the group velocity and -vector
are parallel within the medium and at the PML interface. Ac-
cording to [26] and (7b), this constitutes a stable system, with
the wave attenuating inside the PML. However, in a magnetized
plasma, the refractive index surface is highly anisotropic and
thus dependent on the -vector direction.

F. PML in the Whistler Mode

For the purpose of the present development, we are inter-
ested in waves with frequencies below the electron gyrofre-
quency, also known as whistler-mode waves. Characteristics of
this propagation mode are illustrated by the dispersion diagrams

Fig. 5. Cold plasma dispersion diagram where � represents the propagation
direction with respect to the background magnetic field. � � � corresponds
to the real part of the wave number. � � � corresponds to the imaginary part
of the wave number. � � right-handed mode. � � left-handed mode. � �

ordinary mode. � � extraordinary mode. 	 � Right-hand cutoff frequency.
	 � left-hand cutoff frequency. 	 � upper hybrid frequency. 	 � plasma
frequency. 	 � electron gyrofrequency.

of Figs. 5 and 6 adapted from [33, pp. 356–392] where Fig. 6
represents an expanded region around .

The LHR frequency in Fig. 6 is a branch that exists when ions
are included in the cold plasma formulation. For the case when
the ratio of electron plasma frequency to electron gyrofrequency
is high, its value is approximately equal to [34, pp. 30–32]

(8)

where and are the electron and ion gyrofrequencies,
respectively. It is important to note that all wave numbers less
than zero in Fig. 5 represent imaginary wave numbers corre-
sponding to evanescent modes, while those greater than zero
represent propagating modes. Though we are mainly interested
in whistler-mode propagation, the dispersion diagram of Fig. 5
contains frequencies in the HF range including the Z-mode
branch [2] for completeness. Waves propagating in the Z-mode
exhibit simultaneous electrostatic and electromagnetic behavior
and, as shown in Section III-H, PML instabilities exist in this
frequency range as well.

For frequencies between and , wave propagation in
directions orthogonal to the static magnetic field is not possible
and such wave energy is thus strictly evanescent. For

, the resonance cone angle is defined as the angle be-
tween the direction orthogonal to the background magnetic field
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Fig. 6. Dispersion diagram of whistler-mode including LHR frequency.

and the cone along which the refractive index tends to infinity
as shown in Fig. 7. Example refractive index surfaces for fre-
quencies above and below the local LHR frequency are shown
in Figs. 7 and 8, where represents the wave number, is the
group velocity or velocity of energy flow given by the normal
to the refractive index surface, and is the resonance cone
angle discussed earlier. The refractive index surfaces depicted
in Figs. 7 and 8 are functions of the wave normal angle, de-
fined as the angle between and the ambient magnetic field.
The Gendrin angle is the nonzero wave normal angle at which
the group velocity is parallel with the static magnetic field [35].
The Gendrin angle is illustrated in Fig. 7 and for high ratios
of is given approximately by the relation [35]

(9)

where and are the angular wave frequency and electron
gyrofrequencies, respectively. For angles , all compo-
nents of and are in the same relative direction. However, for
wave normal angles beyond the Gendrin angle, i.e., , the
components of and , which are orthogonal to the static mag-
netic field, are antiparallel when entering the PML as shown in
Fig. 9. Whistler-mode waves with a wave normal angle greater
than the Gendrin angle, such as the wave denoted by “1” in
Fig. 9, exhibit exponential growth in the PML per (7b). This
growth occurs because the PML shown to be unstable in Fig. 9
is designed to absorb waves with wave normals in the direc-
tion or waves of the form . Because the component of
is negative at the PML interface (and thus immediately inside it),
the wave fields experience nonphysical growth inside the PML.
Wave “2” is attenuated in the PML because the components
of and are parallel at the PML interface.

Fig. 7. Refractive index surface for � � � � � ��.

Fig. 8. Refractive index surface for � � � � � .

Fig. 9. Unstable PML for whistler-mode propagation.

G. Solution to PML Instability in Whistler Mode

The NIMs discussed by [31] present a similar problem with
antiparallel group and phase velocities. In the NIMs of [31], the
antiparallel group and phase velocity condition occurs at a par-
ticular frequency and is independent of the direction of . Fur-
thermore, in the case of the NIMs, the group and phase velocity
vectors are exactly antiparallel, i.e., are at 180 with respect to
one another. A simple frequency-dependent adjustment to the
stretching parameter of (5) is all that is needed to compensate
for the PML instability. In a magnetized plasma, the situation
is more complex with the group velocity and -vectors being
both frequency and direction dependent, and being at a varying
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Fig. 10. Evanescent boundary conditions for PML in whistler mode.

angle (that is neither zero nor 180 ) with respect to one an-
other. Thus, the stretching parameter, in addition, must incor-
porate information about . We have chosen to incorporate a
specially adapted form of the PML that has been tailored to iso-
late and absorb evanescent modes in the directions orthogonal
to the static magnetic field as shown in Fig. 10 for frequencies

, . For frequencies , , how-
ever, the aforementioned instability is not present. Though the
refractive index surface of Fig. 8 is highly anisotropic at these
frequencies, for the PML surface alignment shown in Fig. 9,
there is no -vector for which the directional components of
and are antiparallel, and thus, a PML can be made to absorb
both propagating and evanescent modes in this frequency range.

Numerical errors due to the reflection of propagating modes
from the evanescent boundary conditions do not pose an issue
for antennas oriented perpendicular to the static magnetic field
at whistler-mode frequencies. For frequencies well below the
electron gyrofrequency, the refractive index surface is virtually
flat with the resonance cone angle being within a few degrees of
the direction orthogonal to the static magnetic field. In this case,
most of the wave energy is focused into the PML parallel to the
static magnetic field and the evanescent modes are absorbed by
the PML in the direction orthogonal to the static magnetic field.

A strictly evanescent PML can be realized by utilizing the
formulation given in [30]. For simplicity, we only show the
component. From [30, eq. (7)], we have

(10)

where is the modified operator inside the PML, is
a factor that controls evanescent attenuation for nonpropagating
modes, and are terms that control the at-
tenuation of simultaneous propagating and evanescent modes.
Because the inclusion of any terms in the
sequence produces amplification inside of the PML orthogonal

Fig. 11. Unstable PML for Z-mode propagation.

to the static magnetic field, these terms are removed. Thus, a
strictly evanescent PML for the direction is given by

(11)

where represents a conductivity profile that varies from 0
at the PML interface to 1 at the last PML layer in a low-order
polynomial fashion.

H. Z-Mode Instability

Analogous to the PML that amplifies waves in the whistler
mode, Z-mode wave propagation [34] for frequencies between
the plasma frequency and upper hybrid frequency as shown in
Fig. 5 exhibits these same instabilities within the PML. Fig. 11
illustrates this instability in conjunction with the Z-mode refrac-
tive index surface.

It is seen from Fig. 11 that the PML oriented perpendicular
to the magnetic field that attenuates waves at frequencies in the
whistler mode is now unstable for Z-mode propagation. An im-
portant benefit of the FDFD method is that it allows us to iso-
late a particular frequency of interest without exciting transients
at other frequencies due to broadband numerical noise. These
transients are fundamental characteristics of time-domain sim-
ulations methods such as FDTD. Because we are not concerned
with propagation at these higher frequencies for the purpose
of radiation belt electron precipitation by VLF waves, this HF
branch can be ignored. However, for time-domain simulations,
this issue would need to be specifically addressed.

I. Computational Mesh Considerations

The computational grid used in our model is a nonuniform
Cartesian mesh. For propagation at wave normal angles close
to the resonance cone, the theoretical wavelength drops to zero
in the cold plasma limit, and is thus not properly resolved on a
mesh with finite cell size. As a consequence, waves propagating
with wave normal angles close to the resonance cone realize
wavelengths on the order of the mesh cell size regardless of the
cell resolution.

With the inclusion of an antenna, however, it has been ver-
ified in our simulation that if the antenna is well resolved by
the largest cell size used in the computational space (i.e., 30
cells over the length of the antenna), it is not necessary to re-
alize zero wavelengths using finite size cells. Thus, increasing
the cell resolution beyond 30 cells does not adversely affect the
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Fig. 12. Computational domain for cold plasma simulations. The PML
boundary conditions orthogonal to the magnetic field and denoted by PML
are evanescent for � � � � � .

impedance values since the waves dominating the energy flow
are well resolved. This observation is supported by [12] and [13]
where it was found that dipole antennas operating in a mag-
netized plasma environment preferentially radiate waves whose
wavelength is on the order of the antenna length.

IV. SIMULATION RESULTS

We now present results for the current distributions and input
impedance of electric dipole antennas in a magnetized plasma.
FDFD simulations are carried out for dipole antennas oriented
perpendicular with respect to the ambient static magnetic field.
This orientation is chosen since the antenna pattern and power
delivery are optimal for launching waves parallel to the static
magnetic field [12], [13]. Antennas considered for the purpose
of our application are on the order of 100 m in length and up
to 20 cm in diameter. The orientations of these antennas with
respect to the static magnetic field are shown in Fig. 12.

The FDFD method is well suited to model small geometries
with respect to a free-space wavelength. The antenna itself is
assumed to be a perfect electric conductor (PEC) and the cur-
rent distribution along the length of the antenna is calculated
by taking a line integral of the frequency-domain magnetic field
components encircling each wire element along the length of
the antenna. The input impedance is calculated using

(12)

where the field quantities are already in the frequency domain
per use of the FDFD method. Equation (12) represents the ratio
of the complex phasors quantities for the current and voltage at
the terminals of the antenna.

For the purposes of our simulation, we first examine the prop-
erties of a 100-m-long electric dipole antenna in a cold mag-
netized plasma operating near in the magnetic equato-
rial plane. We consider an electron–proton plasma with
401 kHz and 110 kHz in a collisionless environment.
The computational meshes for a 100-m antenna are shown in
Fig. 13 representing the geometries for frequencies above and
below . The directed antenna is located in the center of
the space and is 20 cm in diameter, which corresponds to the
smallest cell size in the space. The magnetic field is oriented
in the direction and a PML is used to truncate the space in
all directions. The dipole antenna is excited with an hard
source in the gap between the conducting elements with a value

Fig. 13. Variation in cell size along each of the principal directions for nonuni-
form mesh used in simulation at � � �. The dark gray cells correspond to
those that are within the computational domain and the light gray cells corre-
spond to the PML layers. (a) Frequencies below � with ���� ��� ��� dimen-
sions �� � �� � ��. (b) Frequencies above � with ���� ��� ��� dimensions
�� � �	 � 
�.

of 1 V/m and the system is allowed to converge with a relative
residual norm of .

One of the primary benefits of using frequency over time-do-
main analysis is the ability to use a different mesh and PML
configuration for each simulation run. Though we do not use
this advantage to the full extent available (a different configura-
tion for each frequency), we do use a different mesh and PML
configuration for frequencies below and above for which
the propagation characteristics are quite different as previously
shown in Figs. 7 and 8. For frequencies , there ex-
ists a range of -vectors for which the refractive index is very
large and tending to infinity at the resonance cone angle
as shown in Fig. 7. It is, therefore, imperative to utilize much
smaller cells to capture these tiny wavelengths resulting from
the high refractive index relative to those used for frequencies

as shown in Fig. 13. For frequencies below ,
the resonance cone disappears as shown in Fig. 8 with the re-
fractive index surface being closed and possessing a maximum
of at directions orthogonal to the background mag-
netic field. The refractive index surface for becomes
more isotropic with decreasing frequency and thus larger cells
sizes may be used as shown in Fig. 13(a). It is this difference
in refractive index between the two frequency regimes that ex-
plains why the cell size along the direction corresponding to
the length of the antenna stays at a constant 3 m for
while the cell size is variable for .

As with the computational mesh, the PML configuration is
different for frequencies above and below . For frequen-
cies , the PML consists of ten cells in the direction,
15 cells in the direction, and ten cells in the direction. The



CHEVALIER et al.: TERMINAL IMPEDANCE AND ANTENNA CURRENT DISTRIBUTION OF A VLF ELECTRIC DIPOLE 2463

Fig. 14. Reflection coefficient calculations for PML oriented along �� direction,
parallel to the static magnetic field, for angles of 5 , 25 , and 45 with respect
to normal incidence. RHCP and LHCP incident wave polarizations are shown
including the performance for frequencies above and below � .

PML layers in both the and directions are made to absorb
only evanescent waves, while the PML layers in the direc-
tion absorb both propagating and evanescent waves in this fre-
quency range. These layers, along with the computational mesh,
are illustrated in Fig. 13. For frequencies below , there are
ten PML layers in all directions and each PML is made to ab-
sorb both propagating and evanescent waves. The PML parame-
ters are different for frequencies above and below because
the cell sizes and refractive index surfaces are quite different in
the two cases. The PML performance up to 10 kHz including
frequencies above and below for the simulations in the

environment are shown in Figs. 14 and 15 corresponding
to PML orientations parallel and perpendicular to the static mag-
netic field, respectively.

There are several things to notice about the plots of Figs. 14
and 15. First, the only propagating modes in the frequency range

where are right-hand circularly

Fig. 15. Reflection coefficient calculations for PML oriented in �� and �� direc-
tions, perpendicular to the static magnetic field, for angles of 5 , 25 , and 45
with respect to normal incidence. RHCP and LHCP incident wave polarizations
are shown including the performance for frequencies above and below � .

polarized (RHCP). All waves launched from the antenna that
are left-hand circularly polarized (LHCP) are evanescent in the
plasma at these frequencies. The discontinuity in the reflection
coefficient calculations at is a direct result of the differ-
ences in mesh and PML geometries across this transition re-
gion as stated earlier. Though the PML performance for LHCP
waves representing the directions orthogonal to the static mag-
netic field described by Fig. 15 is relatively poor, these waves
will reflect into the PML parallel to the static magnetic field
of Fig. 14 and be absorbed with greater attenuation. As men-
tioned in Section III-G, the PML in the direction orthogonal to
the static magnetic field as represented in Fig. 15 for frequencies

has been tailored to absorb evanescent waves only
to avoid the PML instabilities mentioned earlier. As a result,
the incident RHCP propagating modes experience no attenua-
tion and are perfectly reflected. Finally, there is a small section
in Fig. 15(a) in the range 9.2 10 kHz for which the in-
cident RHCP wave is evanescent. The resonance cone angle of
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Fig. 16. � � � current distribution for a 100-m antenna at � � 400 Hz driving
frequency.

Fig. 17. � � � current distribution for a 100-m antenna at � � 2.0 kHz driving
frequency.

Fig. 18. � � � current distribution for a 100-m antenna at � � 2.6 kHz.

Fig. 7 is 5 at 9.2 kHz and marks the point at which the inci-
dent RHCP waves become evanescent and able to be absorbed
by this PML.

A. Current Distributions and Input Impedance Calculations
for a 100-m Antenna at

The first case study is a 100-m antenna located in the equa-
torial plane at . We compare the current distributions for

Fig. 19. � � � current distribution for a 100-m antenna at � � 10.0 kHz.

frequencies above and below the local LHR frequency which is
2.55 kHz. Figs. 16 and 17 represent the current dis-

tributions for two frequencies below . It can be seen from
Figs. 16 and 17 that the current distributions are virtually iden-
tical to the assumed triangular distribution of [9]–[11]. One im-
portant point is that for a simulated antenna of finite thickness,
the current is nonzero at the ends, contrary to the ideal case,
since the finite area allows for a buildup of charge at the tips.
The simulation results thus reflect this realistic condition much
better than the idealized case shown in dashed lines. Figs. 18 and
19 represent the current distributions for two frequencies above

. Once again, there is no significant deviation from the as-
sumed triangular distribution, except for the realistic end-effect
due to the finite antenna radius.

Fig. 20(a) and (b) compares the simulated input impedance of
the 100-m dipole antenna at with results obtained from
[9]–[11]. Fig. 20(b) represents an expanded portion of Fig. 20(a)
showing the zero impedance point in finer detail. The plots for
both the resistance and the reactance calculated with our nu-
merical simulation are in good agreement with those evaluated
analytically by [9]–[11]. Below , [9]–[11], predict the re-
actance to vary from approximately at zero frequency to

at the LHR frequency. Unlike with the quasi-electrostatic as-
sumption of [6], the works of [9]–[11] predict the resistance to
have a nonzero value below the LHR frequency ranging from
at zero frequency to at the LHR frequency. These trends are
reflected in the simulated results as shown in Fig. 20(a) and (b).
Above , the analytical reactance varies from to about

at 10 kHz. The simulated results in these regimes are
within about .

The disparity between the analytical and simulated results in
Fig. 20(b) is attributed to a combination of theory and numer-
ical accuracy of the FDFD technique. The authors of [9]–[11]
assume a triangular current distribution with zero current at the
tips of the antenna. In reality, an antenna possessing finite width
will support current at the tips of the antenna as shown in the
simulation plots of Figs. 16–19. Additionally, the use of cells
which are at least times smaller than the corresponding
free-space wavelength results in convergence issues for the as-
sociated FDFD matrix. The large ratio of wavelength to cell
size produces a matrix with vastly different eigenvalues and
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Fig. 20. Input impedance for a 100-m antenna at � � �. (a) Full range response. (b) Expanded region around zero impedance.

Fig. 21. � � � current distribution for a 100-m antenna at � � 460 Hz driving
frequency.

thus a large condition number; a limitation of the frequency-do-
main method in this regime. This limitation is readily seen in
Fig. 20(b) for which there exist impedance values that possess
a negative resistance below the LHR frequency.

B. Current Distributions and Input Impedance Calculations
for a 100-m Antenna at

The second case study examines the properties of a 100-m
antenna located at in the equatorial plane. Typical values
of the plasma and gyrofrequencies at are 284 kHz
and 32.6 kHz, respectively. Because the computational
mesh geometry of Fig. 13 and the PML performance character-
istics of Figs. 14 and 15 are very similar to the simulation setup
at , these characteristics are not shown. Only two dif-
ferent examples of the current distribution are given since they
are not markedly different than those for the cases of an antenna
at . Figs. 21 and 22 represent the current distributions for
frequencies above and below 761 Hz. It can be seen
from Figs. 21 and 22 that there is no significant deviation from

Fig. 22. � � � current distribution for a 100-m antenna at � � 4.0 kHz driving
frequency.

a triangular current distribution for an antenna subject to a de-
crease in plasma and gyrofrequencies. Fig. 23(a) and (b) com-
pares the simulated input impedance of the 100-m dipole an-
tenna at with results obtained from [9]–[11]. As with the
results from the previous case study, the impedance character-
istics in Fig. 23 exhibit very good agreement with the work of
[9]–[11].

V. NONTRIANGULAR CURRENT DISTRIBUTIONS

For the 100-m antennas we have considered thus far operating
at both and in the equatorial plane, the current dis-
tributions have remained virtually triangular. We now show that
there exist cases for which these electrically short antennas oper-
ating at VLF frequencies exhibit current distributions that decay
exponentially along the length of the antenna as a result of their
orientation lying within the evanescent region of the refractive
index surface for frequencies above . For this purpose, we
consider antennas operating at only and consider varia-
tions in length and plasma frequency while keeping the gyrofre-
quencies constant. For these comparisons, is unchanged
and has a value of 2.55 kHz.
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Fig. 23. Input impedance for a 100-m antenna at � � �. (a) Full range response. (b) Expanded region around zero impedance.

Fig. 24. Current distributions for 2000-m-long antenna at � � � operating at
5 kHz.

A. Long Antennas

First, we consider the effects of an increase in antenna length,
keeping all plasma parameters constant, corresponding to condi-
tions found at . Figs. 24 and 25 show the current distribu-
tion for linear antennas that are 2000 and 4000 m corresponding
to lengths which are factors of 30 and 15 smaller than the equiv-
alent free-space wavelength, respectively.

It is seen from Fig. 24 that for a 2000-m antenna, the cur-
rent distribution only slightly deviates from the triangular as-
sumption whereas for the 4000-m antenna shown in Fig. 25 the
current experiences substantial decay, which would result in a
significant decrease in the dipole moment, thereby reducing the
radiation resistance. Thus, dipole antennas that exhibit this type
of exponential decay along the length of the elements would not
be as efficient at delivering power to the medium, and therefore,
are not as useful as wave-injection instruments.

B. High Plasma Frequency

An increase in the local plasma frequency, keeping all other
factors unchanged, results in a similar exponential decrease
in the antenna current distribution. In this case, we examine a

Fig. 25. Current distributions for 4000-m-long antenna at � � � operating at
5 kHz.

100-m-long antenna operating at an augmented plasma
environment by adjusting only the local plasma frequency
to values of 10 and 20 MHz. These results are shown in Figs. 26
and 27.

Figs. 26 and 27 correspond to plasma frequencies that are
roughly 20 and 40 times the normal value at . It is not until
the plasma frequency reaches 20 MHz as shown in Fig. 27 that
we see a detrimental effect on the current moment as in Fig. 25.
Since plasma frequencies that are this high are not typically seen
in space environments which are considered in this paper, the
example of Fig. 25 is of little concern for a 100-m antenna. How-
ever, for future space missions that propose long antenna de-
signs, this adverse effect on the current distribution due to long
antenna lengths is an issue that would need to be addressed be-
cause there apparently is nothing to be gained by using longer
dipole antennas, at least in terms of radiation efficiency.

With respect to the case of high plasma frequency, our sim-
ulations have only explored 100-m antennas. However, it is en-
tirely possible that slightly longer antennas orbiting at low alti-
tudes such as in the polar regions of the Earth, where the electron
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Fig. 26. Current distribution for 100-m antenna operating in plasma with
� � 10 MHz and driving frequency of 5 kHz.

Fig. 27. Current distribution for 100-m antenna operating in plasma with
� � 20 MHz and driving frequency of 5 kHz.

densities can be much larger, would exhibit the same exponen-
tial decay as in the previous case study concerning the 4000-m
antenna operating in the equatorial region of . Future
simulation work using our code could determine this minimum
length requirement for a given plasma environment.

VI. CONCLUSION

We have illustrated some of the difficulties in modeling elec-
tromagnetic wave propagation in a magnetized plasma and have
verified an important assumption inherent in past analytical
work, namely, the assumed current distribution along the dipole
antenna. The current distribution appears to be triangular for
most cases shown at whistler-mode frequencies and our results
for the terminal impedance of the dipole antennas studied here
agree well with those of analytical work. In addition, we have
shown that the current distribution exhibits exponential decay
for longer antennas and for environments with large plasma
frequencies relative to the conditions listed in our initial case
studies. It should be noted that this decay is present even though
these same antennas would be considered electrically short in
a free-space environment. The 100-m antennas located at both

and seem to be self-tuning for the frequencies
simulated above in that the reactance curves shown in
Figs. 20 and 23 are virtually zero across the range given. With

the current distribution thus verified to be triangular, the results
of [12] can be used to determine the power radiation pattern.

This work represents an initial step in the development of
a more complete (in terms of the underlying physics) electro-
magnetic code to self-consistently solve for both the near and
far fields generated by electric dipole antennas. The numerical
methods including the PML boundary condition utilized herein
resolves a number of difficult challenges that are not specific to a
cold plasma environment. As such, this work also represents an
advance in the numerical study of electromagnetic wave propa-
gation in a magnetized plasma in particular, or more generally
for arbitrary anisotropic media.
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