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[1] The electromagnetic field excited by an arbitrary current source embedded in an
unbounded uniform cold magnetoplasma is investigated in this paper. The Green’s
function method for solving the radiation equation is used, and the derived solution is valid
for any cold plasma parameters. There are always two wave modes excited, and in the
far field each mode has the form of a spherical wave. A refractive index for spherical waves
is introduced to describe the propagation. The properties of these excited spherical
waves are discussed in this paper in comparison with the plane wave representation.
It is shown that the energy flow of the spherical wave is always in the radial direction,
i.e., parallel to the wave normal.
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1. Introduction

[2] When a radio sounder in the ionosphere or magneto-
sphere transmits electromagnetic waves, these waves can return
to the receiver when they are reflected in the plasma. The
received signals provide the information of the sounded media.
By analyzing the measured data, the physical parameters of the
medium like density and movement can be obtained. The
waves usually originate from a source of small dimensions
relative to the distances involved, and in the far field they have
spherical wavefronts. For ground-based sounding, when the
wave reaches the ionosphere the radius of curvature is so large
that the wave in a given direction can be treated as one of two
plane waves, either Lmode or Rmode, and the error introduced
with this approximation is generally believed to be negligibly
small. For sounding in the topside ionosphere and the magne-
tosphere, however, the transmitter and receiver on board a
rocket or satellite are located within an anisotropic medium, and
the question arises as to how well the excited field is still
approximated by a single plane wave in a given direction.
[3] The radiation problem for a source located in an

anisotropic medium was first addressed in the middle of the
last century [Arbel and Felsen, 1963, and references therein].
Later several methods were proposed to study radiation in
anisotropic plasma [Seshadri and Wu, 1970; Bennett, 1976;
Fung and Kwan, 1983; Lai and Chan, 1986; Novikov and
Rybachek, 1990; Cottis et al., 1999], and solutions were
found for a point source or an elementary dipole. For a given
current distribution, the radiation field is a superposition of
the contributions from all the source points of the current. In
the integration process, however, difficulties arose in finding

rigorous analytical expressions for the radiation field, except
for some special current distributions [Bennett, 1976]. Spe-
cial attention was paid to studying the characteristics of short
antennas in plasma [e.g., Balmain, 1964; Chevalier et al.,
2008]; near field approximations or numerical methods
were used for these analyses. In this paper, we derive ana-
lytical solutions for the far field that can be used for radio
sounding applications like the Radio Plasma Imager (RPI) on
NASA’s IMAGE satellite with dipole antennas extending
500 m tip to tip and operating frequencies from 3 kHz to
3 MHz [Reinisch et al., 2000, 2001].
[4] An attempt is made in this paper to derive the electro-

magnetic waves in the far field excited by a current source
arbitrary in dimension and distribution, and to study the
excited wave properties including wave mode, polarization,
and the energy flow when the current source is embedded in
anisotropic plasma. Applications to inhomogeneous media
[e.g., Fung and Green, 2005] are not attempted here, and will
be reported in a future paper.

2. Assumptions and the General Solution

[5] It is assumed that a sinusoidal current source is located
in an unbounded uniform magnetoplasma described by the
cold plasma theory, and that a sinusoidally varying electro-
magnetic field will be stimulated; the e jwt term is deleted in the
equations below. When the z axis is set along the direction of
the ambient magnetic field, the relative dielectric tensor ɛ can be
written in matrix form [Budden, 1985]

ɛ ¼
ɛ1 �jɛ2 0

jɛ2 ɛ1 0

0 0 ɛ3

2
64

3
75;

ɛ1 ¼ 1� XU

U2 � Y 2
; ɛ2 ¼ XY

U2 � Y 2
; ɛ3 ¼ 1� X

U

X ¼ w2
pe

w2
; Y ¼ wce

w
; U ¼ 1� jZ; Z ¼ n

w

ð1Þ

8>><
>>:
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where w denotes the angular frequency, and n the electron-
neutral collision frequency. The electron plasma frequency wpe

and the electron gyrofrequency wce

wpe ¼ Nee2=ɛ0með Þ1=2
wce ¼ ej jB0=me

ð2Þ

depend on the plasma density (Ne), electron charge (e) and
mass (me), and the amplitude of the ambient magnetic field
intensity (B0). It should be noted that the ion effects have
been ignored in equation (1) although that is not necessary in
this study.
[6] The goal of this analysis is to find the solution from the

equation derived from the Maxwell equation system

r� r� EðrÞð Þ � k0
2ɛ � EðrÞ ¼ �jm0wJðrÞ ð3Þ

where J(r) is the complex current density at a source point.
E(r) and H(r) are the phasors of the electric and magnetic
fields at the observation point r, and k0 = w/c is the wave
number in free space. The relationship between the speed of
light in free space, c, the permittivity of free space, ɛ0, and
the permeability of free space, m0, is c ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
ɛ0m0

p
in the

International System of Units. Bold letters denote vectors or
tensors, and this notation convention applies throughout the
text of this paper.
[7] This analysis is not limited to any specific current

source as long as it is confined to a limited region of space.
In general, a rigorous solution of equation (3) can be derived
with the Green’s function method [Weiglhofer, 1993; Bayin,
2006a, 2006b]. The Green’s function is a tensor,

G r; r′ð Þ ¼ jm0w
2pð Þ3

Z
G�1e�jk� r�r′ð Þ

n o
dk ¼ jm0wk03

2pð Þ3

�
Z

G�1e�jk0n� r�r′ð Þ
n o

dn

G ¼ kk � k2Iþ k0
2ɛ ¼ k0

2 nn� n2Iþ ɛ
� � ð4Þ

where I denotes the unit tensor. The solution of equation (3)
is then

EðrÞ ¼ jm0wk03

2pð Þ3
Z
dn e�jk0n�rG�1 �

Z
dr′ e jk0n�r′J r′ð Þ� �� �

: ð5Þ

In equations (4) and (5)
R
…dr′,

R
…dk, or

R
…dn are sim-

plified notations for the three-dimensional integrals, and the

refractive index vector of a plane wave, n, is defined pro-
portional to the wave vector k by

k ¼ k0n: ð6Þ
When the adjoint matrix of G is denoted by adj(G) and its
determinant is denoted by det(G), the inverse matrix G�1 ¼
adj Gð Þ=det Gð Þ. The integration for the current in (5) is the
spatial spectrum of the current in n space given by its Fourier
transform,

J nð Þ ¼
Z
dr′ J r′ð Þejk0n�r′� � ð7Þ

In the following analysis, three coordinate systems are
defined for the observing point, the current source, and the
refractive index space, as shown in Figure 1. Their common
origin is selected at a point inside the current source region,
and the z axes are parallel to the ambient magnetic field. In
addition to the Cartesian coordinate systems we also selec-
tively use spherical and cylindrical coordinate systems to
facilitate the calculations, transforming from one to another
as needed. The components are denoted as

r ¼ x; y; zð Þ ¼ r;a;bð Þ ¼ r;b; zð Þ
r′ ¼ x′; y′; z′ð Þ ¼ r′;a′;b′ð Þ ¼ r′; b′; z′ð Þ
n ¼ nx; ny; nz

� � ¼ n; q;8ð Þ ¼ nr;8; nz
� � ð8Þ

Note that in addition to the three integrals in equation (7), the
calculation of the electric field as expressed by equation (5)
involves nine integrations over n space. As differentiation is
in general easier than integration, the analysis is simplified
by using the method developed by Kogelnik [1960]. In fact,
part of the integrand can be replaced by the result of a dif-
ferential operation because

adj Gð Þe�jk0n�r ¼ Le�jk0n�r ð9Þ

The differential operator L is a tensor acting on the
observing coordinates, and in the Cartesian coordinate sys-
tem it can be written in a matrix form,

L ¼
L11 L12 L13

L21 L22 L23

L31 L32 L33

2
4

3
5: ð10Þ

The expression of the elements can be found in Appendix A.
Applying equation (9) to (5) leads to

EðrÞ ¼ jm0wk03

2pð Þ3
Z
dn

Le�jk0n�r

det Gð Þ � J nð Þ
� �

: ð11Þ

As the integration over n space and the differentiation of the
operator with respect to the observing point are independent,
the computation order can be changed. Finally the expression
of the radiation field becomes

EðrÞ ¼ L � AðrÞ
HðrÞ ¼ j

m0w
r� EðrÞ ð12Þ

Here a vector function is introduced,

AðrÞ ¼ jm0wk03

2pð Þ3
Z
dn

e�jk0n�r

det Gð Þ J nð Þ
� �

ð13Þ

Figure 1. Coordinate systems.
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To solve the problem for an isotropic medium, as is well
known, one usually introduces a vector potential and
expresses the magnetic field by means of a differential
operator (the curl) acting on it. For the anisotropic medium,
the problem is more complicated. However, as indicated by
equation (12) the electric field can be expressed as an oper-
ation of a differential operator acting on the vector A(r),
which is sometimes referred to as the general vector potential,
or often simply as the vector potential. Now, one needs to
perform only a single three dimensional integration for the
vector potential followed by differentiations to get the excited
electromagnetic field according to equation (12).

3. General Vector Potential

[8] Because of the symmetrical property of the medium as
implied by equation (1), plane waves can propagate along
the ambient magnetic field, and cylindrical waves in the
perpendicular direction. It should therefore be possible to
represent the result of equation (13) as a superposition of
such waves. In order to do this, it is more convenient to use
the cylindrical coordinate system, and the integration will be
performed over the whole n space such that dn ¼
nrdnrd8dnz; 0 ≤ nr < þ∞; 0 ≤ 8 ≤ 2p;�∞ < nz < þ∞.
[9] In the cylindrical coordinate system, n ¼ nr;8; nz

� �
;

the determinant takes the form

det Gð Þ ¼ k0
6 ɛ3nz4 þ ɛ1 þ ɛ3ð Þnr2 � 2ɛ1ɛ3

� �
nz2

þɛ1nr4 þ ɛ22 � ɛ21 � ɛ1ɛ3
� �

nr2 þ ɛ21 � ɛ22
� �

ɛ3

� �
;

ð14Þ
and after factorization

det Gð Þ ¼ k0
6ɛ3 nz

2 � nzþ2 Þ nz
2 � nz�2 Þ;�� ð15Þ

where

nz�2 ¼ 2ɛ1ɛ3 � ɛ1 þ ɛ3ð Þnr2 þ q� nr
� �� �

= 2ɛ3ð Þ
q� nr

� � ¼ � ɛ1 � ɛ3ð Þ2nr4 � 4ɛ22ɛ3nr2 þ 4ɛ22ɛ32
h i1=2

�p=2 ≤ arg qþð Þ < p=2; p=2 ≤ arg q�ð Þ < 3p=2ð Þ
ð16Þ

Note that det Gð Þ ¼ 0 is the dispersion relation giving
the refractive index of plane waves expressed in the cylindrical
coordinate system. It should be pointed out that the refractive
index of plane waves derived this way is exactly the same as
the index derived using spherical coordinates. There are two
wave modes designated by “+” and “�” signs, and q(nr)
serves as the mode discriminator. At the so called coupling
point, where q(nr) = 0, the mode is indeterminate and will
convert from one to the other when crossing it [Budden, 1985].
[10] Substituting equation (15) into equation (13) and

noting that

n2zþ � n2z� ¼ qþ nr
� �

=ɛ3 ¼ �q� nr
� �

=ɛ3 ð17Þ

one can represent the vector potential as

AðrÞ ¼ AþðrÞ þ A�ðrÞ

A�ðrÞ ¼ jm0w
2pð Þ3k03

Z ∞

0
dnr

(
nr

q� nr
� � Z 2p

0
d8

"
e�jk0nrr cos 8�bð Þ

�
Z þ∞

�∞
dnze

�jk0nzz
J nr; 8; nz
� �
nz2 � nz�2

#)
ð18Þ

Equation (18) indicates that the vector potential, and thus the
excited field, can be decomposed into two parts related to the
two modes of plane wave.
[11] In collisional plasma, the integrand of integral (18)

has four poles in the complex nz plane, two located in the
lower half plane, and two in the upper half plane. For col-
lisionless plasma the poles are all located on the real axis. As
the integration results for collisional and collisionless plasma
are different, we use the limitation principle: the solution for
collisional plasma is found, and then the solution for the
collisionless plasma is determined as the limit of the general
solution as the collisions approach zero. The integral over nz
can be performed using the residue theorem. There are
possibly more poles associated with the spatial spectrum as
discussed by Kaklamani and Uzunoglu [1992]. To simplify
the analysis, it is assumed in this paper that there are no
singular points for the spatial spectrum J nr;8; nz

� �
and that

it vanishes at infinity, i.e., lim
nj j→∞

J nr;8; nz
� � ¼ 0. When z > 0

(or z < 0), the real axis and the semicircle in the lower (or
upper) half nz plane are selected as the integration contour so
that the poles enclosed in the lower (or upper) half plane are
used for the integration. The results for the two cases can be
combined into one representation associating only with the
poles in the lower half plane,

A�ðrÞ ¼ m0w
2pð Þ2k03

Z ∞

0
dnr

(
nre�jk0nz� sgn zð Þz

2q�nz�

Z 2p

0
d8

�
h
e�jk0nrr cos 8�bð ÞJ nr;8; nz� sgn zð Þ� �i)

z ≠ 0;�p < arg nz�ð Þ < 0ð Þ ð19Þ

The sign function is defined as

sgn zð Þ ¼
�1; if z < 0
0; if z ¼ 0
þ1; if z > 0

8<
: ð20Þ

In order to perform the integration over the variable 8, the
function e�jk0nrrcos(8�b) is expressed as a series of Bessel
functions [Stratton, 1941],

e�jk0nrr cos 8�bð Þ ¼
X∞
u¼�∞

�jð ÞuJu k0nrr
� �

e ju 8�bð Þ ð21Þ

and the spatial spectrum of the current is expanded as a
Fourier series

J nr; 8; nz� sgn zð Þ� � ¼ X∞
m¼�∞

dm� nr
� �

e jmj

dm� nr
� � ¼ 1

2p

Z 2p

0
J nr;8; nz� sgn zð Þ� �

e�jm8d8 ð22Þ

For any current distribution the vector coefficients for any
integer m satisfy the relation

dm� �nr
� � ¼ �1ð Þmdm� nr

� � ð23Þ

This relation is very important and will be used later. The
proof is given in Appendix B. Replacing the integrand of
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(19) with equations (21) and (22) and integrating over 8, the
vector potential becomes

A�ðrÞ ¼ m0w
2pk03

Xþ∞

m¼�∞
�jð Þmejmb

Z ∞

0
dnr

(
nre�jk0nz� sgn zð Þz

2q�nz�

� dm� nr
� �

Jm k0nrr
� �)

: ð24Þ

As expected, the vector potential of each mode at any
observation point r is expressed as a composition of waves
that look like plane waves along the ambient magnetic field,
and cylindrical waves in the perpendicular direction.

4. Far Field Analysis

[12] An asymptotic expansion is applied to the Bessel
function in (24) and only the lowest-order term remains to
give the far field since the higher-order terms attenuate more
quickly with distance,

Jm k0nrr
� � ¼ 2

pk0nrr

	 
1=2

cos k0nrr� mp
2

� p
4

� �
ð25Þ

Substitution into equation (24) yields

A�ðrÞ ¼ m0w
2pk03

1

2pk0r

	 
1=2 X∞
m¼�∞

e jmb

�
eþjp4

R∞
0 dnr

ffiffiffiffiffi
nr

p
2q�nz�

dm� nr
� �

e�jk0 nz� sgn zð Þzþnrrð Þ

þ �1ð Þme�jp4
R∞
0 dnr

ffiffiffiffiffi
nr

p
2q�nz�

dm� nr
� �

e�jk0 nz� sgn zð Þz�nrrð Þ

8>><
>>:

9>>=
>>;
ð26Þ

Changing the variable nr with�nr in the second integral and
noting that for the even functions q�(�nr) =
q�(nr), nz�(�nr) = nz�(nr), and using the relation (23), the
two terms can be combined into one integral over the whole
real axis of nr from negative to positive infinity,

A�ðrÞ ¼ m0w
2pk03

1

2pk0r

	 
1=2 X∞
m¼�∞

e jmbeþjp4

Z þ∞

�∞
dnr

�
ffiffiffiffiffi
nr

p
2q�nz�

dm� nr
� �

e�jk0nsr ð27Þ

where a “spherical refractive index, ns” has been introduced
defined by

ns ¼ nz� cos aj j þ nr sin a ð28Þ

The sign of the square root in (27) is not important since the
current is arbitrary anyway. It should be pointed out that
in the above derivation two cases have been excluded:
a = 0 and a = p (r = 0) and a = p/2 (z = 0). For the parallel
direction, the Bessel asymptotic in equation (25) does not
hold although the vector potential expression as given by
equation (24) is valid for this case, and the perpendicular
direction is not included in the expression for the general
vector potential as shown by equation (19). However, the
general vector potential is merely introduced as an interme-
diate function for the computation of the electromagnetic
field and has no direct physical meaning. We have the

freedom to choose the values for these two special cases and
define them as the limits of the general solution when
a → 0 (and a → p) and a → p/2. From now on, the
asymptotic expression for the general vector potential,
equation (27), is valid for any point in the observing coor-
dinate system.
[13] The spherical refractive index defined by equation

(28) is a multivalued function representing a four-sheet
Riemann surface with eight branch points, where individual
sheets join together. Four branch points are determined by
nz(nr) = 0, and the other four by q(nr) = 0. The asymptotic
form of the integral in equation (27) can be found using the
saddle point method [Felsen and Marcuvitz, 1994]. The
integrand function is analytically extended to the whole
Riemann surface and the integral path of the real axis is
deformed to the steepest descent through the saddle point.
The asymptotic form of equation (27) then becomes

A�ðrÞ ¼ m0w
2pk04

nrs= nz�″ nrs
� �

sina cosaj j� �� �1=2 1

2q�nz�

�
X∞
m¼�∞

ejmbdm� nrs
� �" #

e�jk0nsr

r

q� ¼ ɛ1 � ɛ3ð Þ2nrs4 � 4ɛ22ɛ3nrs2 þ 4ɛ22ɛ32
h i1=2
� �p=2 ≤ arg qþð Þ < p=2; p=2 ≤ arg qþð Þ < 3p=2ð Þ

nz� ¼ 2ɛ1ɛ3 � ɛ1 þ ɛ3ð Þnrs2 þ q� nrs
� �� �

= 2ɛ3ð Þ� �1=2
;

nz�″ nrs
� � ¼ d2nz� nr

� �
dnr2






nr ¼ nrs

ns ¼ nz� cos aj j þ nrs sin a; �p=2 ≤ arg nsð Þ ≤ 0ð Þ ð29Þ

In equation (29) ns is referred to as the refractive index of
spherical waves, or simply, the spherical refractive index.
And the saddle point, nrs, is the root of the equation

dns
dnr

¼ 0.

From equation (28), it can be written as

nr � ɛ1 þ ɛ3ð Þqþ ɛ1 � ɛ3ð Þ2nr2 � 2ɛ22ɛ3
h i

cos aj j
þ 2ɛ3nzqsin a ¼ 0 ð30Þ

Note that equation (29) represents the case when the saddle
point equation (30) has only one single root for a given
direction and for either q+ or q� mode. If there is more than
one saddle point for a mode, the contributions from all
saddle points should be taken into account, and the asymp-
totic solution is the summation of all contributions.
[14] Recalling Fourier expansion (22), the asymptotic

form of the vector potential finally becomes for r → ∞:

A�ðrÞ ¼ m0w
2pk04

F1� að ÞJ nrs;b; nz� sgn p=2� að Þ� � e�jk0nsr

r

F1� að Þ ¼ 1

2q�nz�
nrs= nz�″ nrs

� �
sin a cos aj j� �� �1=2

:

ð31Þ

[15] The above result is derived using the asymptotic
approach. As done by some other authors, equality signs are
used in the asymptotic equations (25) to (31). It should be
pointed out, that all of them represent the lowest order of the
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asymptotic expansion, and they are valid only in the far
region as the distance is approaching infinity. Asymptotic
results do not imply approximations, however, and the
asymptotic form of a function gives its precise value as the
argument approaches infinity. In praxis, the “minimum dis-
tance” to the far field depends on the anisotropy of the
plasma as discussed by Rasmussen et al. [1986], but the
distances involved in radio sounding with IMAGE/RPI
usually far exceed this minimum distance.

5. Refractive Index of Spherical Waves

[16] The refractive index is determined by the roots of the
saddle point equation (30). Thus the spherical refractive
index can be interpreted geometrically as the saddle peak on
the Riemann surface. It is clear that the saddle points are
symmetric with respect to the perpendicular direction and
one need only find the roots for the range 0 ≤ a ≤ p/2.
[17] At first, one can find the roots of equation (30) for

special cases. In the parallel direction a = 0, nr = 0 is one
root giving

nrs ¼ 0

q� ¼ 2 ɛ22ɛ32
� �1=2

nz� ¼ 2ɛ1ɛ3 þ q�ð Þ= 2ɛ3ð Þ½ �1=2
ns ¼ nz�; �p=2 ≤ arg nsð Þ ≤ 0ð Þ ð32Þ

In the perpendicular direction a = p/2, the branch point
nz = 0 is one root yielding

nrs ¼ ffiffiffiffiffi
ɛ3

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ɛ12 � ɛ22ð Þ=ɛ3

p
q� ¼ ɛ1 � ɛ3ð Þ2nrs4 � 4ɛ22ɛ3nrs2 þ 4ɛ22ɛ32

h i1=2
nz� ¼ 0

ns ¼ nrs; �p=2 ≤ arg nsð Þ ≤ 0ð Þ ð33Þ

It can be verified that in these two special directions the refractive
index of spherical waves is equal to those of plane waves.
[18] Unfortunately, it is difficult to find the roots of

equation (30) in an explicit analytical form in other direc-
tions, but they can be found numerically. It is more conve-
nient to perform square operations for q(nr) and nZ(nr) in
equation (30) so that it is transformed to a sextic (sixth-order
polynomial) equation

a6t6 þ a5t5 þ a4t4 þ a3t3 þ a2t2 þ a1t þ a0 ¼ 0
t ¼ nr2

ð34Þ

where the expressions of the polynomial coefficients are
listed in Appendix C. There are six roots of the polynomial
equation (34): ti, (i = 1, 2,…, 6). The required saddle points
must be included in them and the remaining task is to
identify which of them qualify as the saddle points giving
physically meaningful solutions.
[19] For collisionless plasma, all the coefficients in (34)

are real numbers, and at least two real roots exist and the
others are conjugate pairs, if any, for such an even order
polynomial equation. The conjugate pairs result in waves
with attenuation along the propagation path. This is

physically unreasonable for collision-free plasma and all the
roots in conjugate pairs should be abandoned. For any pure
real root, either positive or negative, it qualifies if and only if
it meets the following two conditions:
[20] 1. The spherical refractive index must be in the fourth

quadrant, �p/2 ≤ arg(ns) ≤ 0. This condition is set to ensure
that the solution is physically meaningful.
[21] 2. The original equation (30) must be satisfied. This

condition is set because the square operations are performed
to derive equation (34) from (30), and thus the two equations
are not absolutely equivalent: the roots of (30) must be
included in the roots of (34) but a root of (34) may not be a
root of (30).
[22] The signs of the square root for nr ¼

ffiffiffi
t

p
; q nr

� �
and nz(nr) in equation (29) should be properly selected so
that the above two conditions are satisfied. Once the sign
of q(nr) is determined, the mode type is identified. If none
of the sign selections for a root is able to satisfy the above
two conditions, then this root is not qualified. It is obvious
that, corresponding to a qualified positive or negative root,
the spherical refractive index is pure real or pure imagi-
nary, indicating that the spherical wave is either progres-
sive or evanescent in the given direction.
[23] The plasma parameters can be divided into several

regions by the resonance and cutoff lines to construct the
CMA diagram so as to categorize wave property in density/
ambient magnetic field space [Swanson, 1989]. In each CMA
region the topological property of the refractive index remains
unchanged. For collisionless cold plasma the CMA diagram
with eight regions becomes simple, as shown in Figure 2. The
solution (31) is valid for any region of the CMA diagram
except for the region boarder lines, where wave phenomena
cannot be described by the cold plasma approximation.
[24] According to the theory of sextic polynomials with

real coefficients, the numbers of positive and negative real
roots are determined by the sign of a6a0: If a6a0 > 0,

Figure 2. CMA diagram for cold plasma.
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equation (34) has at least two real roots which are both
positive or both negative. If a6a0 < 0, then one root is pos-
itive and the other is negative. It is easy to verify that

a6a0 ¼ 0; If

a ¼ 0; for all CMA Regions;

a ¼ aSRC; for CMA Regions 3; 7 and 8;

aSRC ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ɛ1=ɛ3

p
:

8><
>:

a6a0 > 0; If

0 < a ≤ p=2; for CMA Regions 1; 5 and 6;

aSRC < a ≤ p=2; for CMA Region 3;

0 < a < aSRC; for CMA Regions 7 and 8:

8><
>:

a6a0 < 0; If

0 < a ≤ p=2; for CMA Regions 2 and 4;

0 < a < aSRC; for CMA Region 3;

aSRC < a ≤ p=2; for CMA Regions 7 and 8:

ð35Þ

8><
>:

Therefore, both mode waves are progressive in CMA
regions 1 and 6, but only one mode wave is progressive in
regions 2 and 4, and the other is evanescent. In region 5, the
excited waves of both modes are evanescent. It is interesting
to note that one progressive mode wave is confined in a cone
in regions 3 (extraordinary mode), and 7 and 8 (whistler
mode). The cone is referred to as the radiation cone. The
cone for the extraordinary wave in region 3 is extended
around the direction perpendicular to the ambient magnetic
field, and for the whistler it is confined in the cone around
the ambient magnetic field. Since the resonance cone angle
for plane waves [Stix, 1992] is

aRC ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ɛ3=ɛ1

p
ð36Þ

the radiation cone angle, aSRC, and the resonance angle,
aRC, are complementary, i.e.,

aSRC þ aRC ¼ p=2 ð37Þ

When crossing the border of the radiation cone, the refrac-
tive index of spherical waves jumps from a positive real
number to a negative imaginary number. Typical refractive
indices of spherical waves for collisionless plasma are plot-
ted in Figure 3, the real parts in red, the imaginary parts in
green. For comparison the refractive indices of plane waves
(dotted lines) for the same plasma parameters are also plot-
ted in Figure 3.
[25] As shown in Figure 3, in the directions parallel and

perpendicular to the ambient magnetic field, the spherical
index is equal to the plane wave refractive index. In all other
directions they are different. This difference is small for very
weak plasma, but becomes larger with increasing anisotropy.
In regions 1 and 6, there are two modes of progressive
waves. In regions 2 and 4, only one mode wave is progres-
sive. In region 5, there are no progressive waves excited. In
region 3 both modes are progressive but one is confined to a
cone around the perpendicular direction. In region 7, there is
a progressive mode wave excited in addition to the whistler
wave. The whistler mode waves are also excited in region 8.
The whistlers are confined to the radiation cone.

[26] In general, (34) has only two real roots providing the
qualified saddle points for the two modes. However, there
are some cases where multiple real roots exist and it remains
to be determined whether all the real roots are qualified
saddle points. In the parallel direction, a = 0, equation (30)
reduces to

nr � ɛ1 þ ɛ3ð Þq nr
� �þ ɛ1 � ɛ3ð Þ2nr2 � 2ɛ22ɛ3

h i
¼ 0 ð38Þ

In addition to the root nr = 0, there are two additional roots,

nr
2 ¼ 2ɛ1ɛ22ɛ3 �

ffiffiffiffi
D

p

ɛ1 ɛ1 � ɛ3ð Þ2 ;

D ≡ ɛ1ɛ2
2ɛ3 ɛ1 þ ɛ3ð Þ2 ɛ2 þ ɛ1 � ɛ3ð Þ ɛ2 � ɛ1 þ ɛ3ð Þ ð39Þ

In the case ofD ≥ 0, these two roots are real and one of them
is equal to zero provided that

X ¼ 2
1� Y

2� Y
≡ X1

X ¼ 2
1þ Y

2þ Y
≡ X2

ð40Þ

It turns out that for directions close to the magnetic field
direction, and not only parallel to the field, there exist two
additional real roots, and they qualify as progressive wave
solutions, indicating the existence of submodes: a “�” mode
in CMA region 4 if 1 < X < X2, a “+” mode if X < X2 in
region 7, and a “�” mode if X > X1 and Y > 2 in regions 7
and 8.
[27] In the perpendicular direction, equation (30) shows

that the coupling points, from q(nr) = 0, are roots in
addition to the roots from nz(nr) = 0. It can be proved that
around the perpendicular direction for the “�” mode in
CMA region 3 two more progressive waves exist if
X3 < X < 1 where

X3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y 2

p
ð41Þ

The areas in which submodes exist are shaded in the
CMA diagram in Figure 2. The border lines are defined by
equations (40) and (41). Submode waves for the “+” mode
also exist in region 6, but we were unable to find the
analytical expression for the border line and had to use the
results of numerical computations.
[28] Several examples for the spherical refractive indices

with submodes are plotted in Figure 4. The plane wave
refractive indices are also plotted in Figure 4 for comparison.
When submodes exist, more than one spherical wave with
different propagation speeds will be excited in a given
direction, but there is always only one plane wave. When the
plasma parameters cross a border line entering the shaded
area in the CMA diagram, submode waves start to occur
extending the range of the polar angle. The farther the
parameters depart from the border line, the larger the range.
Submodes also exist in some cases for evanescent spherical
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waves, but they are not discussed here since they are of no
physical importance.

6. Spherical Waves in the Far Field

[29] The excited electromagnetic field in the far region
is derived from equation (12). At first, the components in
the Cartesian coordinate systems are derived and then trans-
formed into the spherical coordinate system. In the course of
the derivation, attention is paid to the far field, and thus all
the terms with higher orders of attenuation with distance can
be ignored. If the subscripts (x, y, z) are replaced by (1, 2, 3),

the components of the electric field in equation (12) are
written as

Ei� rð Þ ¼
X3
j¼1

LijAj�ðrÞ; i ¼ 1; 2; 3ð Þ ð42Þ

where Aj�ðrÞ are the components of the vector potential,

Aj�ðrÞ ¼ m0w
2pk04

F1� að ÞJj� nrs;b; nz� sgn p=2� að Þ� � e�jk0nsr

r
;

j ¼ 1; 2; 3ð Þ ð43Þ

Figure 3. Real (red) and imaginary (green) parts of the refractive indices for typical plasma parameters
(solid lines, spherical waves; dotted lines, plane waves).
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Figure 4. Progressive submode waves in CMA regions 3, 4, 6, 7, and 8: real (red) and imaginary (green)
parts of the refractive indices (solid lines, spherical waves; dotted lines, plane waves).
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Since the vector potential components are expressed in
spherical coordinates while the differential operator is given in
Cartesian coordinates, one need to use the Jacobian for the
coordinate transformation in computation. As examples, the
partial derivatives of the first order for Ax�ðrÞ are derived,

Since we are mainly interested in the far field, the faster
attenuating terms with higher orders of 1/r can be dropped and
the above partial derivatives become

∂
∂x

Ax� rð Þ ¼ �jk0 cos b ns sin aþ cos a
dns
da

	 

Ax� rð Þ

∂
∂y

Ax� rð Þ ¼ �jk0 sin b ns sin aþ cos a
dns
da

	 

Ax� rð Þ

∂
∂z

Ax� rð Þ ¼ �jk0 ns cos a� sin a
dns
da

	 

Ax� rð Þ

ð45Þ

The refractive index of spherical waves defined by (29) is a
function of nrs and a, and nrs itself is also a function of a.
Then we have

dns
da

¼ ∂nz
∂nrs

dnrs
da

sgn
p
2
� a

� �
cosa� nz sgn

p
2
� a

� �
sin a

þ sin a
dnrs
da

þ nrs cosa ð46Þ

Since nrs for either wave mode is a root of the saddle point
equation (30), equation (46) is simplified to

dns
da

¼ �nz sgn p=2� að Þ sin aþ nrs cosa ð47Þ

Then equation (45) becomes

∂
∂x

Ax� rð Þ ¼ �jk0nrs cos bð ÞAx� rð Þ
∂
∂y

Ax� rð Þ ¼ �jk0nrs sin bð ÞAx� rð Þ
∂
∂z

Ax� rð Þ ¼ �jk0jjnzjjAx� rð Þ

ð48Þ

where we introduced the notation ||nz||

jjnzjj ≡ nz sgn p=2� að Þ: ð49Þ

The derivatives for the other two components Ay� rð Þ and
Az� rð Þ are in the same form as (48). This result shows that, in
order to find the far field, the computational rule to find the

derivatives of the vector potential can simply be expressed as
factors,

∂
∂x

⇒� jk0nrs cos b
∂
∂y

⇒� jk0nrs sin b

∂
∂z

⇒� jk0jjnzjj

ð50Þ

As concerns the far field, this computational rule can be
applied to the derivatives of higher orders so that the elements
of the differential operator in equation (42) can all be expres-
sed as factors (see Appendix D).
[30] In the Cartesian coordinate system, the components of

the electric field in (42) can easily be obtained. The com-
putational rule (50) can also be applied to the differential
operator r� (the curl) in equation (12) to derive the mag-
netic field. The far field expressed in the spherical coordi-
nate system is most useful and it can easily be derived
through coordinate transformation. The expressions of the
components of the far field are found in Appendix D. These
expressions are lengthy, however, the far field can be written
in a simple form as

E r;a;bð Þ ¼ Eþ r;a;bð Þ þ E� r;a; bð Þ;

E� r;a;bð Þ ¼ E0� a;b; ɛð Þ e
�jk0nsr

r
H r;a; bð Þ ¼ Hþ r;a;bð Þ þH� r;a;bð Þ;

H� r;a;bð Þ ¼ H0� a;b; ɛð Þ e
�jk0nsr

r

ð51Þ

The phasors E0� a;b; ɛð Þ and H0� a;b; ɛð Þ depend on the
current source, the direction, and the plasma parameters.
[31] As indicated by equation (24), each mode is a

superposition of waves, which look like plane waves along
the ambient magnetic field and cylindrical waves in the

∂
∂x

Ax� rð Þ ¼

sin a cos b �jk0ns � 1

r

	 


þ 1

r
cos a cos b

1

F1� að Þ
∂F1� að Þ

∂a
þ 1

Jx� a; bð Þ
∂Jx� a; bð Þ

∂a
� jk0r

dns
da

	 


� sin b
r sin a

1

Jx� a;bð Þ
∂Jx� a;bð Þ

∂b

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
Ax� rð Þ

∂
∂y

Ax� rð Þ ¼

sin a sin b �jk0ns � 1

r

	 


þ 1

r
cos a sin b

1

F1� að Þ
∂F1� að Þ

∂a
þ 1

Jx� a;bð Þ
∂Jx� a;bð Þ

∂a
� jk0r

dns
da

	 


þ cos b
r sin a

1

Jx� a;bð Þ
∂Jx� a;bð Þ

∂b

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
Ax� rð Þ

∂
∂z

Ax� rð Þ ¼ cos a �jk0ns � 1

r

	 

� sin a

r

1

F1� að Þ
∂F1� að Þ

∂a
þ 1

Jx� a;bð Þ
∂Jx� a;bð Þ

∂a
� jk0r

dns
da

	 
� �
Ax� rð Þ

ð44Þ
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perpendicular direction, and these waves interfere with each
other to form the far field. Now as revealed by (51), the
interference results in a reconstruction of waves in the far
region for each mode, which looks like a spherical wave as
the amplitude is decreasing inversely proportional to dis-
tance; however the propagation speed varies with the polar
angle so that the wavefront is actually not a sphere, its shape
is characterized by the anisotropic medium.
[32] It should be pointed out that there is, in general, a

nonzero field component in the radial direction but the major
components are transverse. The polarization for the two
transverse components of a progressive wave is described by
a polarization factor [Budden, 1985]

ϒ� a;bð Þ ¼ Ea� r;a;bð Þ
Eb� r;a; bð Þ ð52Þ

The polarization factor contains the information of ampli-
tude ratio and phase difference of the two transverse com-
ponents. It is generally a complex number representing
elliptical polarization. The sign of the imaginary part deter-
mines the rotating direction. The vector of the electric field is
rotating in the left (L) or right (R) hand direction. Because of
the symmetrical property of the far field, the polarization
remains unchanged with respect to the direction of the
ambient magnetic field.
[33] It is found that the polarization of left or right hand

rotation is the same as plane wave propagation in the same
direction. The polarization types for progressive modes for
the eight CMA regions are summarized in Table 1.
[34] The excited electromagnetic wave carries energy

from the current source to the far region. The Poynting
vector describes the flow direction and power density. The
time average of the Poynting vector is

S ¼ 1

2
Re E�H*

� � ð53Þ

where E; E*
� �

and H; H*
� �

denote conjugate pairs. Since
the far field can be decomposed into two mode waves which
propagate independently, the Poynting vectors for the two
modes in spherical coordinates take the form

Sþ r;a; bð Þ ¼ Srþ r;a;bð Þ; Saþ r;a;bð Þ; Sbþ r;a;bð Þ� �
S� r;a; bð Þ ¼ Sr� r;a;bð Þ; Sa� r;a;bð Þ; Sb� r;a;bð Þ� � ð54Þ

There is no difficulty deriving these expressions for the
components using the information given in Appendix D.
[35] It is very interesting and important to note that the

two transverse components of S for either mode are exactly
equal to zero,

Sa� r;a;bð Þ ¼ 0
Sb� r;a; bð Þ ¼ 0

ð55Þ

indicating that the energy is always flowing along the radial
direction parallel to the wave normal. This is different from
the plane wave description for anisotropic medium where the
wave normal and the energy flow are generally in different
directions making the problem more complicated than the
isotropic case. The directional agreement of the phase and
group velocities of the excited spherical waves makes the
anisotropic plasma look like an isotropic medium except that
the refractive index changes with the angle from the ambient
magnetic field. The analytical proof of equation (55) uses the
saddle point equation (30) which specifies the qualitative
relation for nrs, q and nz appearing in the expressions of
Sa� (r, a, b) and Sb� (r, a, b). The algebraic proof is
omitted here since it is too lengthy.

7. Convergence to the Isotropic/Free
Space Solutions

[36] When the operating frequency is very high as com-
pared to the plasma frequency, or when the ambient mag-
netic field is very weak, the anisotropy of the plasma
diminishes making the medium near isotropic. If the plasma
density is very small it will look like free space. In this
section the behavior of the derived expressions of the excited
far field is examined for the limits Y → 0 and/or X → 0,
revealing the convergence of the derived magnetoplasma
solution to the isotropic/free space case.
[37] For very weak magnetized collisionless plasma, the

parameters in equation (1) can be expressed by a Taylor
approximation,

ɛ1 ¼ ɛ3 � XY 2 þ O Y 4ð Þ
ɛ2 ¼ XY þ O Y 3ð Þ
ɛ3 ¼ 1� X

ð56Þ

where O(Ym), for example O(Y4), indicates that the omitted
lowest-order term is �Ym. As a result one can find the
approximations for the mode discriminator

q ¼ �2 ɛ32 � ɛ3nr2
� �1=2

XY þ O Y 2
� �

: ð57Þ

And for the function

nz ¼ ɛ3 � nr
2

� �1=2 þ�ɛ3nr2 � 2X ɛ32 � ɛ3nr2
� �1=2

4ɛ3 ɛ3 � nr2
� �1=2 Y þ O Y 2

� �
:

ð58Þ

Table 1. Polarization Type of Spherical Waves

“+” Mode “�” Mode

Region 1 L R
Region 2 L /
Region 3 L Ra

Region 4 / L
Region 5 / /
Region 6 R L
Region 7 L R
Region 8 / R

aAfter crossing the coupling point q = 0, the polarization for the submode
waves changes to L type.
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This gives the derivatives

nz ′ ¼ �nr

ɛ3 � nr2
� �1=2

þ

� 2ɛ3 ɛ32 � ɛ3nr2
� �1=2 � 2ɛ3X

h i
ɛ3 � nr2
� �

�ɛ3nr2 ɛ3
2 � ɛ3nr2

� �1=2 � 2X ɛ3
2 � ɛ3nr2

� �
8<
:

9=
;nrY

4ɛ3 ɛ3 � nr2
� �3=2 ɛ32 � ɛ3nr2

� �1=2
þ O Y 2

� �
nz
″ ¼ �ɛ3

ɛ3 � nr2
� �3=2 þ O Yð Þ ð59Þ

Then the saddle points for the two modes can be found from
the equation nz′ = �sin a/|cos a|, i.e.,

�nr

ɛ3 � nr2
� �1=2 þ

� 2ɛ3 ɛ3
2 � ɛ3nr2

� �1=2 � 2ɛ3X
h i

ɛ3 � nr2
� �

�ɛ3nr2 ɛ3
2 � ɛ3nr2

� �1=2 � 2X ɛ3
2 � ɛ3nr2

� �
8<
:

9=
;nrY

4ɛ3 ɛ3 � nr2
� �3=2 ɛ32 � ɛ3nr2

� �1=2
þO Y 2

� � ¼ � sin a
cos aj j ð60Þ

Therefore the Taylor expansion of the saddle point takes
the form

nrs ¼ ffiffiffiffiffi
ɛ3

p
sin aþ sin a

4ɛ33=2
�ɛ32 1þ cos aj j2

� �
� 2X 2 cos aj j

h i
Y

þ O Y 2
� � ð61Þ

leading to

q� ¼ �2ɛ3 cos aj jXY þ O Y 2
� �

nz� ¼ ɛ31=2 cos aj j � sin2a
4ɛ3

1=2
�ɛ32 1þ cos2 a

� �� 2 cos aj jX� �
� Y � XY

2ɛ3
1=2

þ O Y 2
� �

ns ¼ ɛ31=2 þ O Yð Þ

nz�″ nrs
� � ¼ �1

ɛ3
1=2 cos aj j3 þ O Yð Þ ð62Þ

Now it is easy to find the limits when Y → 0:

nrs →
ffiffiffiffiffi
ɛ3

p
sin a

q� → 0
nz� →

ffiffiffiffiffi
ɛ3

p
cos aj j

ns →
ffiffiffiffiffi
ɛ3

p
ð63Þ

The limit of q� → 0 indicates that when Y → 0, there is no
mode splitting and the limiting spherical refractive index,ffiffiffiffiffi
ɛ3

p
, is equal to that of isotropic plasma. The wave is pro-

gressive in all directions if X < 1, and evanescent if X > 1.
Furthermore, the refractive index approaches one for free
space as X → 0.

[38] One needs to take more care in finding the limits for
the far field because q� appears in the denominator of
F1�(a), and the components of the far field given in
Appendix D become indeterminate. No attempt is made here
to give the detailed derivation; instead we simply summarize
the results. Using equations (56) to (62) and applying
L’Hopital’s rules to the indeterminate terms, one finds that
the radial components of the far field approach zero and the
two mode waves represent two transverse spherical waves,
circularly polarized with equal amplitudes and opposite
sense of rotation. Since the refractive indices of the two
modes approach the same quantity in the limit, the sum of
the two modes results in a linear polarized wave. The lim-
iting expressions are exactly identical to the isotropic/free
space solutions.

8. Summary and Discussions

[39] Our theoretical investigation of the waves excited by
any current source embedded in an unbounded uniform cold
magnetoplasma finds that the waves look similar to spherical
waves although the speed varies with direction. The refrac-
tive index of spherical waves is introduced to describe the
phase speed and it differs from that of plane waves, espe-
cially for strongly magnetized plasma. Under some condi-
tions, submode spherical waves exist in a given direction.
The expressions for the excited far field are derived and the
results converge to isotropic/free space solutions. It is found
that the polarization type for the spherical wave is generally
the same as the plane wave. The energy flow of the spherical
wave is always in the radial direction.
[40] In the course of study, it is found that the cylindrical

coordinate system is more convenient than the spherical
coordinate system for the evaluation of the general vector
potential. The spatial spectrum of the current is expanded as
a Fourier series instead of a Taylor series because the former
generally converges uniformly so that the operation order of
summation and integration can be interchanged. Owing to
the successful application of the asymptotic approach, the
differential operator matrix can be expressed in factors. All
these considerations are critical for the successful derivation
of the rigorous expressions for the excited far field.
[41] The derived results are valid for any plasma param-

eters as long as the cold plasma approximation holds. The
assumption of uniformity will limit, but not be critical to, the
application of the developed results to wave propagation, for
example, in the ionosphere-Earth waveguide [Rybachek,
1995; Rybachek et al., 1997], or hemispheric field-aligned
propagation in the magnetosphere [Fung and Green, 2005].
We expect, however, that the demonstrated directional
agreement of the phase and group velocities of the spherical
waves will simplify the ray tracing in a layered anisotropic
medium, reducing it to an isotropic task.
[42] The current source in this paper is arbitrary; it may be

a current along an antenna, a current induced by lightning or
electric jet in space, etc. For radio sounding, the derived
results provide another theoretical tool to analyze observed
wave phenomena. Radiation properties such as radiation
pattern and resistance can be derived with an assumed
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current distribution along an antenna. These topics are
beyond the scope of this paper.

Appendix A: Elements of the Differential Operator

[43] The expressions for the elements of the differential
operator are

L11 ¼ ∂2

∂x2
∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

	 

þ k20

	
ɛ1

∂2

∂x2
þ ∂2

∂y2

	 


þ ɛ3
∂2

∂x2
þ ∂2

∂z2

	 


þ ɛ1ɛ3k40

L12 ¼ ∂2

∂x∂y
∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

	 

þ k20

	
ɛ3

∂2

∂x∂y

þ jɛ2
∂2

∂x2
þ ∂2

∂y2

	 


þ jɛ2ɛ3k40

L13 ¼ ∂2

∂x∂z
∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

	 

þ k20 ɛ1

∂2

∂x∂z
þ jɛ2

∂2

∂y∂z

	 


L21 ¼ ∂2

∂y∂x
∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

	 

þ k20

	
ɛ3

∂2

∂x∂y
� jɛ2

∂2

∂x2
þ ∂2

∂y2

	 


� jɛ2ɛ3k40

L22 ¼ ∂2

∂y2
∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

	 

þ k20

	
ɛ1

∂2

∂x2
þ ∂2

∂y2

	 


þ ɛ3
∂2

∂y2
þ ∂2

∂z2

	 


þ ɛ1ɛ3k40

L23 ¼ ∂2

∂y∂z
∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

	 

þ k20 ɛ1

∂2

∂y∂z
� jɛ2

∂2

∂x∂z

	 


L31 ¼ ∂2

∂z∂x
∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

	 

þ k20 ɛ1

∂2

∂x∂z
� jɛ2

∂2

∂y∂z

	 


L32 ¼ ∂2

∂z∂y
∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

	 

þ k20 ɛ1

∂2

∂y∂z
þ jɛ2

∂2

∂x∂z

	 


L33 ¼ ∂2

∂z2
∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

	 

þ k20

	
ɛ1

∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2
þ ∂2

∂z2

	 


þ ɛ21 � ɛ22
� �

k40 ðA1Þ

Appendix B: Coefficients of the Fourier Expansion

[44] For any spatial spectrum function J nr;8; nz�
� �

, the
separation into two parts is always possible: the even and
odd symmetrical parts with respect to the variable nz�,

J nr;8; nz�
� � ¼ JE nr;8; nz�

� �þ JO nr;8; nz�
� �

JE nr;8; nz�
� � ¼ J nr;8; nz�

� �þ J nr;8;�nz�
� �

2

JO nr;8; nz�
� � ¼ J nr;8; nz�

� �� J nr;8;�nz�
� �

2

ðB1Þ

Since

JE nr;8;�nz�
� � ¼ JE nr;8;þnz�

� �
JO nr;8;�nz�

� � ¼ �JO nr;8;þnz�
� � ðB2Þ

it is easy to find the relation

J nr;8; nz� sgn zð Þ� � ¼ JE nr; 8; nz�
� �þ sgn zð ÞJO nr;8; nz�

� �
ðB3Þ

The coefficients in the Fourier expansion in equation (22) in
section 3 can, therefore, be written as

dm� nr
� �¼ 1

2p

Z 2p

0
JE nr;8; nz�
� �þ sgn zð ÞJO nr;8; nz�

� �� �
e�jm8d8

¼ dEm� nr
� �þ sgn zð ÞdOm� nr

� � ðB4Þ

Noting that for the even function nz�(�nr) = nz�(nr)
and using the conversion relations between cylindrical
and Cartesian coordinate systems nx = nr cos 8, ny = nr
sin 8 and nz = nz, the expression for dm� �nr

� �
is derived,

dm� �nr
� � ¼ 1

2p

Z 2p

0

�
JE �nr; 8; nz� �nr

� �� �
þ sgn zð ÞJO �nr;8; nz� �nr

� �� ��
e�jm8d8

¼ 1

2p

Z 2p

0

JE �nr cos 8;�nr sin 8; nz� �nr
� �� �

þ sgn zð ÞJO �nr cos 8;�nr sin 8; nz� �nr
� �� �

" #

� e�jm8d8

¼ 1

2p

Z 2p

0

�
JE nr; 8� p; nz� nr

� �� �
þ sgn zð ÞJO nr;8� p; nz� nr

� �� ��
e�jm8d8 ðB5Þ

With variable change t = 8 � p, equation (B5) becomes

dm� �nr
� � ¼

1

2p

Z þp

�p
JE nr; t; nz� nr

� �� �
e�jm tþpð Þdt

þ sgn zð Þ 1

2p

Z þp

�p
JO nr; t; nz� nr

� �� �
e�jm tþpð Þdt

2
6664

3
7775

¼ �1ð Þm dEm� nr
� �þ sgn zð ÞdOm� nr

� �� � ðB6Þ

Using equation (B4) the proof of the relation (23) in section
3 is closed.

Appendix C: Coefficients of the
Polynomial Equation

[45] The equation to find the saddle points can be trans-
formed to a sextic equation

a6t6 þ a5t5 þ a4t4 þ a3t3 þ a2t2 þ a1t þ a0 ¼ 0

t ¼ nr2
ðC1Þ
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The coefficients in the equation are

a6 ¼ ɛ1 ɛ1 � ɛ3ð Þ4 ɛ1 cos2aþ ɛ3 sin2a
� �

a5 ¼ � ɛ1 � ɛ3ð Þ2

8ɛ21ɛ
2
2ɛ3 cos

4a

þ �ɛ22 ɛ1 þ ɛ3ð Þ ɛ21 þ ɛ23 � 10ɛ1ɛ3
� �

þɛ1 ɛ1 � ɛ3ð Þ2 ɛ21 þ ɛ23
� �

" #
sin2a cos2a

þɛ3
�ɛ22 ɛ21 þ ɛ23 � 10ɛ1ɛ3

� �
þɛ1 ɛ1 þ ɛ3ð Þ ɛ1 � ɛ3ð Þ2

" #
sin4a

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

a4 ¼

2ɛ22 ɛ1ɛ3 ɛ21 � ɛ23
� �2 � ɛ22ɛ1ɛ3 ɛ21 þ ɛ23 � 10ɛ1ɛ3

� �h i
cos4a

þɛ22ɛ3
ɛ1 � ɛ3ð Þ2 7ɛ31 þ 17ɛ1ɛ23 þ 9ɛ21ɛ3 � ɛ33

� �
�ɛ22 ɛ1 þ ɛ3ð Þ 7ɛ21 þ 7ɛ23 � 30ɛ1ɛ3

� �
" #

sin2a cos2a

þɛ23
ɛ21 ɛ1 � ɛ3ð Þ4 þ ɛ22 ɛ1 � ɛ3ð Þ2 7ɛ21 þ 18ɛ1ɛ3 � ɛ23

� �
�8ɛ42 ɛ21 þ ɛ23 � 4ɛ1ɛ3

� �
" #

sin4a

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

a3 ¼ 2ɛ22ɛ3

�4ɛ1ɛ3ɛ22 ɛ1 þ ɛ3ð Þ2 þ 4ɛ42ɛ1ɛ3
h i

cos4a

þ
�ɛ1ɛ3 ɛ1 � ɛ3ð Þ2 3ɛ21 þ 3ɛ23 þ 2ɛ1ɛ3

� �
�ɛ22ɛ3 3ɛ31 þ 20ɛ21ɛ3 þ 31ɛ1ɛ23 � 6ɛ33

� �
þ6ɛ42ɛ3 ɛ1 þ ɛ3ð Þ

2
64

3
75 sin2a cos2a

þ4ɛ23
�ɛ1 ɛ1 � ɛ3ð Þ2 2ɛ1 þ ɛ3ð Þ
þ2ɛ22ɛ3 ɛ3 � 5ɛ1ð Þ þ 2ɛ42

" #
sin4a

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

a2 ¼ ɛ22ɛ3
2

ɛ22 ɛ1 þ ɛ3ð Þ4 þ ɛ42 � 2ɛ22 ɛ1 þ ɛ3ð Þ2
h i

cos4a

þ4ɛ22ɛ3
5ɛ31 þ 9ɛ21ɛ3 þ 11ɛ1ɛ23 � ɛ33
� �
�ɛ22 5ɛ1 þ 7ɛ3ð Þ

" #
sin2a cos2a

þ8ɛ23 ɛ21 ɛ1 � ɛ3ð Þ2 þ ɛ22 5ɛ21 þ 8ɛ1ɛ3 � ɛ23
� �� 6ɛ42

h i
sin4a

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

a1 ¼ 8ɛ42ɛ
4
3

ɛ22 ɛ1 þ 2ɛ3ð Þ � ɛ1 ɛ1 þ ɛ3ð Þ2
h i

cos2a

þ 2ɛ3 3ɛ22 � 3ɛ21 � ɛ1ɛ3
� �

sin2a

8<
:

9=
; sin2a

a0 ¼ 16ɛ42ɛ
6
3 ɛ21 � ɛ22
� �

sin4a ðC2Þ

Appendix D: Far Field Components

[46] Using the computation rule given by equation (50) in
section 6, the elements of the differential operator as given
by (A1) for either mode can all be reduced to factors,

L11 ¼ k04 nrs2 Q� cos2b � R�
� �

L12 ¼ k04 nrs2Q� sinb cosb � jɛ2U
� �

L13 ¼ k04nrsjjnz�jj P� cosb � jɛ2 sin bð Þ
L21 ¼ k04 nrs2 Q� sinb cosb þ jɛ2U

� �
L22 ¼ k04 nrs2 Q� sin2b � R�

� �
L23 ¼ k04nrsjjnz�jj P� sinb þ jɛ2 cos bð Þ
L31 ¼ k04nrsjjnz�jj P� cosb þ jɛ2 sin bð Þ
L32 ¼ k04nrsjjnz�jj P� sinb � jɛ2 cos bð Þ
L33 ¼ k04 nrs2 V� þ nz�2 V� � ɛ1ð Þ þ ɛ21 � ɛ22

� �� �

ðD1Þ

where

P� ¼ nrs2 þ nz�2 � ɛ1
Q� ¼ nrs2 þ nz�2 � ɛ3
R� ¼ ɛ1nrs2 þ ɛ3nz�2 � ɛ1ɛ3
U ¼ nrs2 � ɛ3
V� ¼ nz�2 � ɛ1
jjnz�jj ¼ nz� sgn p=2� að Þ

ðD2Þ

The components of the far field in the Cartesian coordinate
system are derived from equation (12) as

Ex� rð Þ ¼ k0
4

nrs2 Q� cos2b � R�
� �

Ax�ðrÞ
þ nrs2 Q� sinb cosb � jɛ2U
� �

Ay�ðrÞ
þnrsjjnz�jj P� cosb � jɛ2 sinbð ÞAz�ðrÞ

8><
>:

9>=
>;

Ey� rð Þ ¼ k0
4

nrs2 Q� sinb cosb þ jɛ2U
� �

Ax�ðrÞ
þ nrs2 Q� sin2b � R�
� �

Ay�ðrÞ
þnrsjjnz�jj P� sinb þ jɛ2 cosbð ÞAz�ðrÞ

8><
>:

9>=
>;

Ez� rð Þ ¼ k0
4

nrsjjnz�jj P� cosb þ jɛ2 sinbð ÞAx�ðrÞ
þnrsjjnz�jj P� sinb � jɛ2 cosbð ÞAy�ðrÞ
þ nrs2 V� þ nz�2 V� � ɛ1ð Þ þ ɛ21 � ɛ22

� �� �
Az�ðrÞ

8><
>:

9>=
>;

Hx� rð Þ ¼ k05

m0w

jjnz�jj
� ɛ1 � ɛ3ð Þnrs2 sinb cosb
�jɛ2nrs2 cos2b þ jɛ2ɛ3

" #
Ax�ðrÞ

þjjnz�jj ɛ1nrs2 cos2b þ ɛ3nrs2 sin2b
�jɛ2nrs2 sinb cosb þ ɛ3nz�2 � ɛ1ɛ3

" #
Ay�ðrÞ

þnrs
� ɛ1 nrs2 þ nz�2

� �� ɛ21 � ɛ22
� �� �

sinb
�jɛ2nz�2 cosb

� �
Az�ðrÞ

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

Hy� rð Þ ¼ k05

m0w

jjnz�jj �ɛ1nrs2 sin2b � ɛ3nrs2 cos2b
�jɛ2nrs2 sinb cosb � ɛ3nz2 þ ɛ1ɛ3

" #
Ax�ðrÞ

þjjnz�jj
ɛ1 � ɛ3ð Þnrs2 sinb cosb
�jɛ2nrs2 sin2b þ jɛ2ɛ3

" #
Ay�ðrÞ

þnrs
ɛ1 nrs2 þ nz�2
� �� ɛ21 � ɛ22

� �� �
cosb

�jɛ2nz�2 sinb

� �
Az�ðrÞ

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

Hz� rð Þ ¼ k05

m0w

nrs R� sinb þ jɛ2U cosbð ÞAx�ðrÞ
�nrs R� cosb � jɛ2U sinbð ÞAy�ðrÞ
þjɛ2nrs2 jjnz�jjAz�ðrÞ

8><
>:

9>=
>; ðD3Þ

Transforming to the spherical coordinate system and repla-
cing the subscripts (x, y, z) with (1, 2, 3), the components of
the far field take the form

Er� rð Þ ¼ m0w
2p

F1� að Þ
X3
i¼1

Ji� nrs;b; jjnz�jj
� �

FEri�

" #
e�jk0nsr

r

Ea� rð Þ ¼ m0w
2p

F1� að Þ
X3
i¼1

Ji� nrs;b; jjnz�jj
� �

FEai�

" #
e�jk0nsr

r

Eb� rð Þ ¼ m0w
2p

F1� að Þ
X3
i¼1

Ji� nrs;b; jjnz�jj
� �

FEbi�

" #
e�jk0nsr

r

Hr� rð Þ ¼ k0
2p

F1� að Þ
X3
i¼1

Ji� nrs;b; jjnz�jj
� �

FHri�

" #
e�jk0nsr

r

Ha� rð Þ ¼ k0
2p

F1� að Þ
X3
i¼1

Ji� nrs;b; jjnz�jj
� �

FHai�

" #
e�jk0nsr

r

Hb� rð Þ ¼ k0
2p

F1� að Þ
X3
i¼1

Ji� nrs;b; jjnz�jj
� �

FHbi�

" #
e�jk0nsr

r

ðD4Þ
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where the factors, FEri�, FHri�, … etc. read as

FEr1� ¼ UP� sin a cos b þ jɛ2U sin a sin b
þnrsknz�kP� cos a cos b þ jɛ2nrsknz�k cos a sin b

� �

FEr2� ¼ UP� sin a sin b � jɛ2U sin a cos b
þnrsknz�kP� cos a sin b � jɛ2nrsknz�k cos a cos b

� �
FEr3� ¼ nrsknz�kP� sin aþ V�P� � ɛ22

� �
cos a

� �
FEa1� ¼ UP� cos a cos b þ jɛ2U cos a sin b

�nrsknz�kP� sin a cos b � jɛ2nrsknz�k sin a sin b

� �

FEa2� ¼ UP� cos a sin b � jɛ2U cos a cos b
�nrsknz�kP� sin a sin b þ jɛ2nrsknz�k sin a cos b

� �
FEa3� ¼ nrsknz�kP� cos a� V�P� � ɛ22

� �
sin a

� �
FEb1� ¼ R� sin b þ jɛ2U cos bf g
FEb2� ¼ �R� cos b þ jɛ2U sin bf g
FEb3� ¼ jɛ2nrsknz�k

� �
FHri� ¼ FEbi� nrs cos a� knz�k sin a

� �� �
; i ¼ 1; 2; 3

FHai� ¼ �FEbi� nrs sin aþ knz�k cos a
� �� �

; i ¼ 1; 2; 3

FHb1� ¼ �ɛ3knz�kP� cos b � jɛ2ɛ3knz�k sin bf g
FHb2� ¼ �ɛ3knz�kP� sin b þ jɛ2ɛ3knz�k cos bf g
FHb3� ¼ nrs ɛ1P� þ ɛ22

� �� � ðD5Þ
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