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Electromagnetic radiation from sources immersed in a cold magnetoplasma is analyzed 
by the use of 'principal-polarized' wave coordinates; and the wave fields, the mean complex 
radiated power, and the Poynting vector are systematically expressed in terms of 'polarized' 
wave modes. For each polarized wave mode, the medium is effectively isotropic, since the 
Fourier-transformed wave equation for each principal mode is decoupled and is similar to 
the one obtained from the usual scalar Helmholtz operator. In application of the theory, 
consideration is made of the radiation resistance of a linear electric antenna of moderate 

length oriented both parallel and perpendicular to the static magnetic field. Approximate 
closed form expressions for the radiation resistance are obtained for the VLF frequency 
range by using a plasma model appropriate to the magnetosphere. These approximate closed- 
form expressions are compared with the results obtained previously by other workers using 
a quasi-static approximation, and it is shown that excellent agreement exists between the 
two methods of analysis. It is concluded that the quasi-static approximation can accurately 
predict the radiation resistance of a linear antenna in the magnetosphere, given certain 
moderate restrictions on the antenna length. 

1. INTRODUCTION 

In recent years, considerable attention has been 
devoted to the problem of electromagnetic radiation 
from sources immersed in a relatively cold mag- 
netized plasma such as exists in the inner magneto- 
sphere. The anisotropy and electrical compressibility 
of the magnetoionic medium make the study of elec- 
tromagnetic radiation in this medium a mathema- 
tically complex and difficult one, but nevertheless 
it is a study that is being carried forward energeti- 
cally as scientific needs for new plasma diagnostic 
tools and engineering needs for new satellite com- 
munication systems become more acute. 

One area in which much more study is needed is 
that involving antenna radiation characteristics at 
very low frequency (VLF), where the anisotropy 
of the magnetized plasma is most pronounced. This 
need has been emphasized recently by the great 
interest on the part of the geophysical scientific com- 
munity in the idea of a satellite-borne VLF trans- 
mitter operating in the magnetosphere. Such a 
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transmitter would provide a means of performing a 
number of interesting and important experiments 
involving wave-particle interactions, wave propaga- 
tion phenomena, and plasma diagnostics. The use- 
fulness of this transmitter in performing experi- 
mental tasks will be limited ultimately by the amount 
of power that can be radiated into the plasma from 
the antenna (in some instances the radiation pattern 
will also play a critical role). In this connection, a 
knowledge of the coupling between the plasma and 
antenna is crucial. 

It is the purpose of the present paper to attempt 
to give some insight into the problem of the cou- 
pling between a satellite VLF antenna system and 
the magnetospheric plasma by the consideration of 
some idealized cases. Specifically we calculate the 
radiation resistance of a thin electric dipole of mod- 
erate length oriented either parallel or perpendicular 
to the static magnetic field. 

Our work differs from that of other workers who 

have considered similar or identical problems [Bun- 
kin, 1957; Kogelnik, 1960a, b; Kuehl, 1962; Mittra 
and Deschamps, 1963; Arbel and Felsen, 1963; 
Balmain, 1964; Ament et al., 1964; Staras, 1964; 
Weil and Walsh, 1964; Blair, 1964; $eshadri, 1965; 
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Gale]s, 1966a, b] in that we have started from a 
full-wave treatment of the problem and have derived 
approximate closed form expressions for the radia- 
tion resistance which are valid for a wide range of 
antenna lengths. Using these expressions, we are 
able to define for the first time the range of antenna 
length for which a quasi-static analysis, such as that 
employed by Balmain [1964] and Blair [1964], ac- 
curately predicts the radiation resistance of the 
antenna. 

The plan of our paper is as follows' In section 2, 
we investigate the radiation problem by formulating 
it in a 'principal-polarized' wave coordinate system. 
With these coordinates, the inversion of' the wave 
matrix becomes trivial, and the term that causes the 
medium to be electrically compressed, i.e., V-E, can 
be easily and directly expressed in terms of external 
sources. For each principal-polarized wave mode, the 
medium is effectively isotropic, since the Fourier- 
transformed wave equation for each principal mode is 
decoupled by the proper expression of V-E in terms 
of external sources. The Fourier-transformed electric 

fields for each principal mode are then obtained with 
the characteristic poles of the system explicitly shown. 
The mean complex radiated power, thus the input 
reactance and radiation resistance, and the complex 
Poynting vector are also systematically expressed in 
terms of' principal-polarized wave modes. 

In section 3, in application of the present formula- 
tion, we consider the radiation resistance for two 
different orientations of a linear electric antenna 

with a triangular current distribution. The analysis 
has been made only in the VLF frequency range 
(Y > 1 ), where approximate closed-form expres- 
sions for the radiation resistance have been obtained 

under the two assumptions that the plasma param- 
eters are appropriate to those of the magnetosphere 
(X >> Y•') and that the antenna is of moderate 
length. (The mathematical definition of the word 
'moderate' can be found in equation 25, and dis- 
cussion of the physical implications of the word is 
given in section 3.3.) These closed-form expres- 
sions for the radiation resistance are compared with 
the results obtained previously by other workers us- 
ing a quasi-static approximation, and it is shown 
that excellent agreement exists between the two 
methods of analysis. Approximate 'necessary and 
sufficient' conditions for the validity of the quasi- 
static approximation are given in terms of restric- 
tions on the antenna length; and some numerical 
examples, illustrating the physical meaning of the 

length restfictions, are computed by using the 
gyrofrequency model of the magnetosphere. 

A comparison of the results of the present paper 
with the results of other workers in the field is made 
in section 4, and in section 5 a brief discussion of 
our results is given. 

2. ANALYTICAL FORMULATION 

In this section we give a general formulation in 
'principal-polarized' wave coordinates for the prob- 
lem of electromagnetic radiation with sources in 
cold magnetoplasma. The Fourier-transformed elec- 
tric and magnetic fields, the mean complex radiated 
power (thus the input reactance and the radiation 
resistance), and the Poynting vector are all ex- 
pressed in terms of the principal-wave modes. 

2.1 Field vectors (E, H). The basic equations 
governing the electromagnetic radiation from a time 
harmonic (e •) source immersed in a uniform, cold 
magnetoplasma are (in rmks units) 

V x E = --jc0t•0H (1) 

V xH = joyce- [ei Nov q- J (2) 

(jw + c,)v = --[el (E + v xB0) (3) 

where •, No, v, c•, and J stand for the free-space per- 
mittivity, the unperturbed density, the ordered ve- 
locity of electrons, the effective electron collision 
frequency, and the external current, respectively. 
Substituting (2) into the curl of (1) gives 

V2E d- /52E -- V(V-E) = f/5-• (J- lel NoV) (4) 

where/• = co/c, the wave number in free space. By 
applying the three-dimensional Fourier space trans- 
form to (4), a transformed wave equation can be 
written 

k• -- fl•s -- k(k-•) = --(•q- lel NoV) (5) 
j•0e 

where •, •, and • are the Fourier-transformed electric 
fields, external current, and electron-ordered velocity, 
respectively. 

To transform (5) into polarized-wave coordinates, 
we define a set of polarized phasors 

_ right} g,• (2••/a (g, q- iS,), left elliptically polarized 
a0 = a,, longitudinally polarized (6) 
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with similar definitions for k,, $,, and x}, (• = q-1, 
-I, 0). The inversions of these quantities follow di- 
rectly from (6). 

With the above definitions, the wave equation 
(5) can be written in polarized-wave coordinates 
(• = q- 1, - 1, 0 coordinates) 

•0-& - •, - •,(k. •) = • (g, •,, - [el •VoV,) (7) 
where &, = 1, when • -- t• and zero otherwise. 

Orienting the spatial coordinates so that Bo = •Bo, 
we can use (3) to obtain •, 

_ -I•1 •, 
x}, - •m½o - ]c, - •o) (•) 

where •20 = ([elBo/m), the magnitude of electron gyro- 
frequency. 

Substituting (8) back into (7) and rearranging the 
result gives 

•' (k. •) = •'• 
where •, = 1 - (X/1 - jZ - vY), the principal rela- 
tive dielectric permittivity, and X, Z, and Y are 
standard notations for normalized frequencies in 
magnetoionic theory [Ratcliffe, 1959]. 

Using (9) in conjunction with the identity k.g = 
• k_•8•, the term which causes the medium to be 
electrically compressed, i.e., k.g, can be directly ex- 
pressed in terms of external sources 

•. • _ • II (•:) •:-• ,,7• ,•(•)(•? -/•+")½:" -/•_") • (/• - •%) ' 
• = +•,-•, o (•o) 

where 

II (•) = ½•' -- f'+O( • -- f'-•)½'• -- 
a(O) = e• sin • 0-{-Co cos • O, e• = «(e+• + e_•) 

and 

The first term on the right-hand side of (12) is caused 
by the external source alone (•i,, implies that •, 
excites only 8,), whereas the second term is due to the 
finite electrical compressibility. 

Using the Fourier transform of (1) and the defini- 
tions (6), the Fourier-transformed magnetic fields for 
each principal polarized mode can be found: 

0_• 0o 0+• 

•- • •+• •o •-• (•3) ß 

g+• go g-• 

where 0,• = 1/(2)t($ & j•), 0o = 2, and •, • and • 
are the unit vectors in Cartesian coordinates. 

2.2 •eneral form for radiation resistance, input 
reaetanee, and Poynting vector. In terms of polar- 
ized-wave coordinates, the mean complex power 
radiated by the current distribution J(x), can be 
written 

Using Parseval's theorem, we can express the mean 
complex power in k space [Sneddon, 1951]: 

- • f • g,*(•) e,(-•) a• (•s) P -- 16• a 
•e radiation resistance and input reactance are 
related simply to the real and imaginary p•ts of the 
complex power 

2ReP 
R -- 2 

I0 

2ImP 
(16) 

where Io is the effective terminal current of the an- 
tenna. 

--fi=[(e, eo -- e+•e_•) sin = 0 -- 2eoe,] q- f[(e,eo -- e+•e-•) '• sin 4 0 q- eo•'(e_• -- e+•)' cos 20] •'= k:t: 2 • 
2•(0) 

Substituting (10) into (9) gives the Fourier-trans- 
formed electric fields for each polarized wave 

1 I 
II (m 

-•(0)(• - •+•.)(• _ •_•) (• _ 

ß • (•••,•)] (•2) 

In terms of the polarized fields, the time averaged 
complex Poynting vector can be expressed by the 
following determinant' 

J 
S=5 

0+, 0o 

E_• Eo E+• 

H+•* Ho* H_•* 

(]7) 

and the Cartesian components of S are given by 
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ß 

2• *)- Ho*(E+ &- 2( •' [•o(m•* - •+• • 
ß 

s, - 2(2•, [•o(H+•* + H_•*)- Ho*(•+• + E_•)] (•8) 

J [E+ H+I* E_iH_•*] $,-• • - 

3. RADIATION RESISTANCE FOR TWO 
PARTICULAR ORIENTATIONS OF AN 

ELECTRIC DIPOLE 

In this section, we make an application of the 
polarized wave formulation by computing an ap- 
proximate closed-form expression for the radiation 
resistance of a finite linear electric antenna oriented 
either parallel or perpendicular to the static mag- 
netic field. The current distribution on the antenna 
is assumed to be triangular. Since our main interest 
involves the VLF characteristics of linear electric 
antennas in the magnetosphere, we have focused 
our attention on the plasma parameters most ap- 
propriate to the magnetosphere (X >> y2; Ratcliffe 
notation) and to frequencies in the VLF range (Y 
> 1). In the VLF range in the magnetosphere, for 
frequencies higher than the proton gyrofrequency, 
it is known that in general the only propagating elec- 
tromagnetic mode is the whistler mode [correspond- 
ing to k_ in (11 )], and consequently only this mode 
can contribute to the radiation power from a VLF 
antenna. An interesting feature of the whistler mode 
waves in the cold plasma theory is the fact that the 
waves are propagating only when the angle between 
the wave normal and the static magnetic field lies 
within the range 0 < 0 _<_ 0r - tan -• (-•.o/•) • and -, 

in this angular range the wave number k_ increases 
monotonically with 0, approaching infinity as 0 --* 0r. 
This behavior of the wave number as a function of 
angle precludes the possibility of uniquely classifying 
any given VLF antenna as a 'short' antenna, since 
no matter how short it might be physically, it is 
always possible to find some wave normal angle 0 
for which the antenna length in that direction will 
exceed one wavelength in the medium and appear 
to be 'long.' 

On the other hand, the total radiation resistance 
involves an integral over 0, and it is possible that a 
given antenna may appear to be 'short' over a large 
enough portion of the range 0 _< 0 <_ 0r, so that its 
primary integrated behavior is that of a short an- 
tenna. 

This fact proves to be the case for moderate- 
length VLF satellite antennas in most regions of the 
inner magnetosphere (1.5 < L < 4) and forms the 
basis for our treatment of the integrals in the fol- 
lowing analysis. 

3.1 Parallel orientation. We center the dipole an- 
tenna of' length 2h in a dextral Cartesian coordinate 
system parallel to Bo. The antenna current is assumed 
to be 

=0, 

J+x = J_• = 0 

The Fourier transform of (19) is 

Izl • h 

Izl > h (19) 

41o sin • (hk,/2) 

•o- • •,• (20) 
o9+•=$-•=0 

For this case, (15) becomes 

if P = -•-87 go*(k) So(k) •k (20 
Using 8o from (12) together with (20) and (21), we 
have the following integral for the complex power in 
spherical k-space coordinates: 

_ (•"- •%.•)(•"- •%_•) cos-" 0 • 
ß sin4(hkcøsO) XsinOd•dOdk (22) 2 

where G = (jZolo"/rah"B), Zo = (u/e) 1 • 377 ohms, 
and a(O) is defined in (11). 

To evaluate (22), we peffom the trivial ½ inte- 
gration and then make use of the fact that the inte- 
grand is an even hnction of k to extend the k 
integration along the entire real k axis. The k in- 
tegration can then be performed by using the tech- 
nique of contour integration. 

In performing the contour inte•ation, we assume 
the medium to be slightly '1ossy' to ensure conver- 
gence of the integral and split the fourth-power sine 
function hto a combination of exponentials ac- 
cording to the relation sin • x = h 0 [ (exp ]x - exp - 
ix) ]•. We then close the contour in the lower-half k 
plane for a• terns involving a negative exponential 



RADIATION RESISTANCE OF SHORT DIPOLE 171 

exp (- ix), and close the contour in the upper-half 
k plane for all terms involving a positive exponen- 
tial exp (ix), taking care to note that the real and 
imaginary parts of k_ have opposite signs. As a 
final step, the losses are allowed to approach zero. 

In evaluating (22) for the VLF frequency range, 
it is found that only the pole k_ contributes to the 
real radiated power, and the following expression 
is obtained for the radiation resistance of the parallel 
antenna: 

R• -- • (hlg) 
ß cos •' 0 sin 0 dO (23) 

where n- k_ (0)//•, 0•- tan -x ([•0/•[)•, X- 
(hfl/2) cos0, G(O) -a(O) (k+ • - k_•)/• •, and we 
have used (16) to evaluate R, from P,. 

Equation 23 can be accurately approximated by 
the first few terms of a power series in h given the 
condition 

• n•(O •) O• << (h•) -• • = cos • ; 0• < 0• (24) 
where 0• is the angle at which the quantity n cos 0 
has its minimum value over the range 0 • 0 < 0•, 
and 'y•' is by definition this min•um value. 

Using (11) to find 0m, (24) can be rewritten as 
•e more definitive conditions 

• [•l--a)•/•+(1 --•o)•/• T• = 1 -- Co) •/• -- (1 -- a)U•J << (hfl)-•; 
r > 2•o/½o + •) (25a) 

• ß • < r < (25•) ß . = •+• << (hfl)-• 2•0 
' - -eo+l 

where a - 
•e details of the approximation of (23) are 

presented in appendix A. Below we give the result 
for the situation in which X >> Y•, a condition 
which holds throughout l•ge regions of •e mag- 
netosphere 

R• - 2e,(h•) 1 -- 

3 

2rq- 1 

x )•' r-2 1 Y- 1 ya (h/g) a (26) 
where • •- X/(Y• -- 1 ), and X >> Y•-. 

Evaluating (25) for the case X >> Y•' leads to the 
following result concerning the range of h for which 
(26) is valid' 

(h•) •' << F/4 X; r > 2 
-- (27) 

(h•) •' << (r- 0/x; 2 _> r _> • 

The restriction on h as given in (27) formally en- 
sures that the power series of (A5) will be rapidly 
convergent, but it is too stringent for practical re- 
quirements. It is possible to show that we need 
only require the condition 

(h•) •' _< •/4 (28) 

in order to be able to approximate R, to within a 
few per cent using (26). 

3.2 PERPENDICULAR ORIENTATION 

For the case of the linear antenna oriented per- 
pendicular to the static magnetic field, it is neces- 
sary to introduce a finite radius for the antenna in 
order to secure the convergence of the integral in 
(15). In this case the current distribution takes the 
form 

J*• - (2)•/•' 1 -- 2•' ' -- 
J•- o, !xl > h (29) 

Jo=0 

where r. - (y•' + z •') •, b - antenna radius, and 
the antenna is assumed to be aligned parallel to the 
x axis. 

Equation 29 leads to the Fourier-transformed 
currents 

41o sin •' (hk•/2) 
eq.x -- (2)•/•'h k• •' Jo(bka.) 

(30) 

where k. - (k •' -- k• •) •. 
Formally, (15) can now be written 

P. = 16•.a (a+• + a_•)g+• d• (31) 
where the field quantities g,• are to be calculated using 
(12) and (30). In evaluating (31) our interest lies mainly 
in those cases in which the antenna length is great 
enough so we can always neglect any terms of the 
order (b/h) which appear in the power series for P•. 
Thus, in effect, we Wish to find the limiting form of P• 
as 'b' --o 0. An approximate evaluation of the real part 
of (31) (for the limiting case 'b' --o 0) is performed in 
appendix B; the result follows' 

•' - •( I•0 I) •' 

I (•) 1•.•. (Yq-- l)a/•' 1 ß In -- 1 -- • + 12 •.a (32) 
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where 

•/'- "-' - 1), r = , - x!( r 

=[½o - [ r - O] 
and it is assumed that 

(h/5)•. < off( Ya-- 1) 1/•' -- 8X (33) 
In (33) the formal constraint (B6) has been re- 
laxed for practical purposes, and this yields an 
approximate over-all error in (32) of less than 
10%. 

3.3 Region o• validity o• the quasi-static ap• 
proximation. As long as (28) is observed, the first 
term of (26) is by far the largest in the series over 
the entire range of Y(oo ) Y > 1) and represents 
at least 9/10 of the series sum. Thus to within 10% 

R, • R• '• = (Zo/26,hlS) (34) 

It is interesting to note that (34) is identical to the 
result that has been obtained by Balmain [1964] 
and other workers using a quasi-static analysis of 
the same antenna configuration. This close agree- 
ment indicates that the quasi-static approximation 
is quite accurate for calculating the real part of 
the complex antenna impedance, given the assump- 
tions leading up to (26), and it is of interest to 
establish in a more general way the conditions under 
which it can be expected that a quasi-static analysis 
will furnish a good approximation to the radiation 
resistance of the parallel antenna. This condition 
can be deduced by noting that an upper bound for 
R, is provided by the expression 

(sin - ( \ / (35) 
which we have obtained by replacing both R+ and R_ 
in (A3) by the factor 2y a and by extending the range 
of integration of the first integral in (A3) up to 
infinity. Since (35) represents a 'generous' upper 
bound to R,, it is clear that the quasi-static approxi- 
mation will fail to describe R, accurately whenever 
R? _• R•. 

The integral contained in (35) has been evaluated 
by Seshadri [1965], and, using his result, the condi- 
tion under which R? • R,• can be established 

through a numerical analysis. It is found that R, q • 
R• when Xy,• ~ •r/2, and thus it can be stated that 
a necessary condition for the validity of the quasi- 
static approximation (as applied to the parallel an- 

tenna described above) is that 

h/•3,,• < •r (36) 

In the light of (36) it is clear that (28) represents 
roughly both a necessary and sufficient condition 
for the validity of the quasi-static approximation, 
and one physical intepretation of the restriction of 
(28) is that the quasi-static approximation will be 
valid for the parallel antenna so long as some direc- 
tion in space can be found for which the antenna 
appears 'short' and for which all portions of the 
antenna radiate approximately in phase. 

As for the case of the perpendicular antenna, 
it is interesting to compare (32) with the results 
obtained by Balmain [1964] and others for the 
perpendicular antenna using the quasi-static ap- 
proximation. Using Balmain's results in conjunction 
with our own notation, the following expression is 
obtained: 

R.• =•r•]-•[Si/• ln•a--I (37) 
Equation 37 shows that the quasi-static 'radiation 
resistance' is exactly the same as the first two terms 
of (32), and it is clear that these first terms repre- 
sent the major portion of (32). Thus our results 
compare closely with those of the quasi-static ap- 
proximation. As in section 3.1, it can be shown by 
using arguments based on upper bounds that the 
condition for the validity of the quasi-static analysis 
is given approximately by (33). 

3.4 Physical interpretation o] antenna con- 
straints. Equations 28 and 33 give the mathe- 
matical constraints on the antenna length under 
which (26) and (32) are good approximations to 
the total radiated power. To determine if these 
constraints lead to situations of any possible phys- 
ical significance in the magnetosphere, it is neces- 
sary to consider these constraints in the light of 
physically acceptable models of the magnetospheric 
plasma. 

One reasonable and simple model of the inner 
magnetosphere (L < 4) is the so-called 'gyrofre- 
quency' model [Helliwell, 1965], in which the plasma 
electron density at any point is proportional to the 
earth's dipole magnetic field strength at that point. 
In this model the relationship between the plasma 
parameters X and Y has the form 

x = (z/i,,) r" (38) 
where fa is the electron gyrofrequency and A is a 
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constant. The work of Smith [1960] can be used 
to obtain a value of A that is characteristic of a 

solar maximum period, i.e., A • 10 • Hz, and the 
variation of [n can be obtained from the dipole field 
approximation [Helliwell, 1965]' 

fH • 9 X 105L-3(1 + 3 sin2•b) 1/2 Hz (39) 
where L is the distance from the earth center meas- 

ured in earth radii and 4, is the magnetic latitude. 
Equations 38 and 39 can be used in conjunction 

with (28) to yield the following constraint on the 
antenna length for the case of the parallel antenna' 

h • • 6 X 10 • Y•L3(meters)2; Y > 2 
-- (40) 

h"<<2.4 X 10S(Y-- 1)LS; 1 ,5 Y_< 2 

where the latitudinal variation of the magnetic field 
strength has been neglected. 

A few simple numerical examples serve to illus- 
trate the content of (40). For instance if the trans- 
mitted signal is to be 5 kHz at L - 3 (where Y ~ 6), 
h must be such that h" << 6 x 10 • m" and (26) will 
be a good approximation for antenna lengths (2h - 
total length) up to about 500 meters. At L -- 2 
and 5 kHz (Y ~ 20), (26) will be a good approxi- 
mation for antenna lengths up to about 1.5 km. In 
the general case, as long as Y > 2 and L •_ 2, (26) 
will be valid for antenna lengths up to at least 100 
meters. However, the usefulness of the expression 
is severely limited as the wave frequency approaches 
the gyrofrequency (Y --) 1), since only antennas of 
vanishingly small length can then satisfy (40). 

A somewhat different situation occurs in the case 

of the perpendicular orientation, since (33) shows 
that in the limit as Y • 1 the antenna length can 
become arbitrarily large and still satisfy the con- 
straint. This behavior is also true in the limit ,o --) 0 

(Y ---) oo ) as is evident in the form obtained after 
using (38) and (39) in (33) 

h" << 1.2 X 10aL • Y"/( Y" -- 1) •/" m" (41) 

where again the latitudinal variation of the mag- 
netic field has been neglected. 

The right-hand side of (41) possesses a minimum 
value as a function of Y, at the point Y - (2)•, 
and it is convenient to use this as a reference value 

to determine the range of h which will satisfy (32) 
for all Y. Thus at Y - (2) •, (41 ) becomes h a << 
2.4 x 10•L • m", and it can be stated that, for all 
values of Y ;> 1, (32) will be a good approxima- 
tion for antenna lengths up to about 200 meters, 

given that L >_ 2. For any other value of Y, keeping 
L fixed, (32) will be valid for linear antennas longer 
than 200 meters, as determined by (41). 

The above examples serve to illustrate the fact 
that in general our expressions for R, and Rl will be 
valid for VLF antenna lengths of the order of, or 
greater than, those presently being employed in mag- 
netospheric satellite experiments, and thus these 
expressions possess a practical worth in providing 
insight into the coupling between satellite ¾LF an- 
tenna systems and the magnetospheric plasma. 

4. COMPARISON OF RESULTS 

A number of other workers have treated the 

problem of VLF radiation characteristics of a thin 
dipole antenna of finite length in a homogeneous, 
cold magnetoplasma. These workers can be divided 
into two groups on the basis of whether a full-wave 
treatment or a quasi-static treatment was used in 
their paper. Without any exception known to the 
authors, those who have used a full-wave treatment 
[Seshadri, 1965; Staras, 1964; Galejs, 1966a, b] 
have presented their results on the radiation resis- 
tance in numerical form and have not given analytic 
closed-form results such as derived above, whereas 
those who have used a quasi-static approximation 
[Balmain, 1964; Blair, 1964] have obtained closed- 
form expressions for which no precise region of 
validity has been specified. The following is a com- 
parison of our results with those of the aforemen- 
tioned workers' 

4.1 Quasi-static treatment. By the use of a 
quasi-static approximation, Balmain [1964] and 
Blair [1964] have analytically obtained the input 
impedance for a short, linear antenna with a tri- 
angular current distribution. For the ¾LF case with 
either a parallel or perpendicular antenna orienta- 
tion, their closed-form expressions for the radiation 
resistance agree exactly with the leading terms of 
our own expressions (26) and (32) (given that 
the antenna is considered to be thin), and in the 
limit h/• --> 0, our closed-form expressions agree 
in full. 

Neither Balmain nor Blair specify the precise 
region of validity of their quasi-static approxima- 
tion, indicating only that their results should hold 
when the antenna length is much less than the 
free-space wavelength at the driving frequency. 
However arguments presented in section 3 show 
that this criterion is not always correct and that 
the quasi-static approximation will be accurate only 
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so long as the antenna length conforms to the con- of principal-polarized wave coordinates. In apply- 
straints given in (28)and (33). ing the resultant formulation, we have considered 

4.2 Full-wave treatment. Seshadri [1965] con- the radiation resistance of a filamentary electric 
siders a current filament of finite length oriented dipole of finite length, possessing a triangular cur- 
parallel to the ambient magnetic field direction and rent distribution and oriented either parallel or per- 
possessing a triangular current distribution; thus this pendicular to the ambient magnetic field. Assuming 
source is identical to that hypothesized in section plasma parameters appropriate to the VLF range 
3.1 of the present paper, and it should be expected in the magnetosphere (X >> Y'•; Y >_ 1), we have 
that our results would agree closely with his. This obtained approximate closed-form expressions for 
proves to be the case, and the VLF portion of the radiation resistance that are valid for a wide 
Seshadri's Figure 4A showing radiation resistance range of antenna lengths. 
versus frequency can be duplicated by using (26). These closed-form expressions are useful not only 
Furthermore Seshadri's numerical results indicate because of their obvious utilitarian advantages over 
that the radiation resistance at VLF increases as purely numerical results, but also (and most im- 
the length of current element decreases, which is portant) because they allow a reasonably precise 
in general agreement with our closed-form result. check to be made on the closed-form results of 

Staras [1964] has calculated numerically the radia- approximate theories such as that of the quasi-static 
tion resistance for the case of a finite dipole oriented analysis. Thus in comparing our closed-form results 
either parallel or perpendicular to the ambient mag- with the closed-form results of the quasi-static ap- 
netic field, but his unusual choice of current dis- proximation, we have been able for the first time 
tribution and limited numerical results makes a to specify the range of antenna lengths for which 
meaningful comparison between our results and his the quasi-static approximation is valid. Our findings 
results extremely difficult. However, in a limited indicate that, for the particular VLF antenna con- 
way, the general trend of Stara's results for the figurations considered, the quasi-static approxima- 
parallel antenna agrees with our results in that his tion should be accurate for a wide range of antenna 
radiation resistance varies roughly inversely as the lengths in the magnetosphere, up to the order of 
antenna length for antennas between 30 and 300 kilometers, as discussed in section 3.4. 
meters long. Since the quasi-static theory is relatively uncom- 

Another two papers in the field have been written plicated compared with the full-wave theory, there 
by Galefs [1966a, b], who formulated a variational is reason to expect that the quasi-static theory can 
expression for the input impedance of a finite in- be used to good advantage in attacking more realistic 
sulated cylindrical antenna with a longitudinal mag- and more complicated antenna problems. However, 
netic field and a finite insulated strip antenna with before the quasi-static approximation can be used 
a perpendicular magnetic field. In both papers the with confidence in treating more realistic problems, 
results concerning radiation resistance are presented it is necessary to define more explicitly the condi- 
in numerical form, with the exception that in the tions under which this approximation is valid in 
low-frequency limit approximate, closed-form ex- a magnetoplasma. In this regard, the specification 
pressions are given for the quasi-static fields. In his which we have made in the present paper of the 
papers, Galejs has compared his results with those realm of validity of the quasi-static approximation 
predicted by the quasi-static approximation of Bal- can be looked upon as a first step toward a more 
main [1964] and found that there was reasonable general appraisal of this theory. 
agreement at low frequency. Since our own results 
agree closely with the quasi-static approximation 
(as already discussed in section 3), it can be in- 
ferred that reasonable agreement also exists between 
Galejs' results and those of the present paper. 

5. CONCLUSIONS 

In the present paper we have analyzed the full- 
wave problem of electromagnetic radiation from 
sources in a cold magnetoplasma through the use 

APPENDIX A: EVALUATION OF R, 

Equation 23 can be accurately approximated in 
closed form by the first few terms of a power series 
in h/L given that (25) holds. The first step is to 
express (23) in terms of a new variable y such that 

'y = n(O) cos 0 (A1) 

A relation between the differential elements dy 
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and dO can be obtained through use of (11) and 
(A1). 

G- •(0) cos 0 s in 0 d0 = 4-1 - •3' 2•, [•(•) u•(•)] a• (A2) 
where 

U•(•,) = I q- r/(-},) 4-•(•,) 

'( ) */(3') • a-f- e0 2-3- e, -- e0 2 
•(3') = [r/2(3 ') --(a- 1)(•0- 1)] 1/2 

Equations A1 and A2 then lead to the following 
form for (23): 

zo [f{•+•'•/' (sin X3,/• 
(sin X3')• d3,] (A', 

where X = (h#/2), •,,• = minimum value of •, (as 
given by the left-hand side of (25)), and 

•,(•) •o - •. , [ v•(•) - •][ v•(•) - 
•0 •(•) [ u•(•) - •0] 

Consider the second integral in (A3); this integral 
contains the major contribution to the radiated 
power. To approximate this integral, we first split 
it into two parts in the following way' 

= + = z, + zo. (A4) 
•'•n ) -x 

In view of (25), the first integral I• involves those 
values of y for which the antenna will appear 'short,' 
and we make the approximation here that the sine 
function in the integral can be replaced by its argu- 
ment (i.e. sin Xy ,-, Xy). The second integral I• in- 
volves those values of • for which the antenna ap- 
pears 'long,' and, in view of (25), y should be large 
enough in this range so that R,(7 ) may be ex- 
panded in a rapidly convergent power series in in- 
verse powers of y. It is sufficient for our purposes 
to use just the first two terms of this series as shown 
below: 

r• •, (AS) 

The foregoing approximation of the integral Ie fol- 
lows closely a method previously used by Seshadri 
[1965]; however, we deviate somewhat from his 
approach by using the following approximate rela- 

tions to complete the integration of the terms in 12' 

l/2 dz -- z TM dz (A6) .tO 

• •r/3 -f- m -- (1/2)•'•+•/(2m -f- 1); (m = 0, 1) 

The approximation in (A6) involves replacing the 
sine function by its argument in the second integral 
on the right-hand side. The use of this approxima- 
tion is in keeping with our treatment of the integral 
Ix of (A4). Now consider the first integral in (A3). 
If (25b) holds, Vm - (•+•)• and the integral is 
identically equal to zero. If (25a) holds, the integral 
is not identically equal to zero, but, unless a ,-, •0 
and Y•' >> 1, it will be the case that (•+•) • _< (hfi)-x, 
and the small argument approximation can be used 
over the entire range of the integral. 

Finally, even if a ~ .•0 and Y" >> 1, it is possible 
to show that the major contribution to the integral 
comes from the range of -• for which the small 
argument approximation is valid, so long as •/• _< ¬ 
(hfi)-L In view of the above considerations, plus the 
fact that the integral will contribute only to the small- 
est terms retained in our series, it is sufficient for 
our purposes to use the small argument approxima- 
tion over the entire range of •/ in the first integral 
in (A3). 

Using (AS) and (A6) in (A3), as well as the 
small argument approximations discussed above, 
the expression for the total radiated power becomes 

R• -- 4•'e, 3 (h•)-I 

where 

•(•) = (•)• e_ (•) a• + e + (•) a• 

I• general the function F(h) can be evaluated 
exactly in terms of elliptic function, and the resultant 
expression can be expanded in powers of (h#). The 
retention of terms through order (h#)" furnishes 
the d½sir½cl expression. 

It can be deduced that the leading term of F(h) 
will have the form 1/3(h#)-•; the magnitude of 
the other terms in F(h) will depend upon the values 
ot the parameters •, •o, and •+• in a more or less 



176 WANG AND BELL 

complicated fashion. In the present development we 
intend to calculate F(h) only for those situations 
where X 3) Y'- >_ 1, and this implies that a ~ •o, 
in which case F(h) can be integrated in terms of 
elementary functions, as shown below 

tegrations in (B1) are more easily handled after a 
change of variable such that 

p = nsin 0cos •k 

q = n(1 --sin •' 0 cos •' •/)1/2 
(m) 

I 18/2 I 2 •(•) _ (•)• •. • / •(• - 0 
• • •0/ 

The development of (A8) in a power series in (hfi) -x 
and the inclusion of the first three terms in (A7) 
lead to the following approximate result for the 
total radiated power: 

•,•Zo I 2•r+ 1 •- • (ht•) -• - 6•r 

2 ( X )•/•' Y-- 2 3•' Y -- 1 ya (hfi)"] (A9) 
where X >> Y'- > 1. 

APPENDIX B' EVALUATION OF R, 

The k integration in (31 ) can be performed using 
the calculus of residues according to the following 
method' 

1. Extend the range of the k integration along 
the entire real k axis, as in section 3.1. 

2. Split the fourth-power sine function into a 
combination of exponentials as in section 3.1. 

3. Make use of the identity, J.0' (x) = (1/•r) J'o' 
Jo(2X sin•)d• to replace J.o •- in (31) and then 
invert the order of integration of • and k. 

4. Follow the method of Mittra and Deschamps 
[1963] to perform the k integration by the calculus 
of residues. 

5. Perform the '4,' integration, find the real part 
of the resultant expressions, and drop all terms of 
the order of a/h or smaller. 

After the above steps are carried out, the fol- 
lowing result is obtained for the radiation resistance 
of the perpendicular antenna: 

fo TM fo ø' nS(n •' -- •0) sin s 0 R. = c a,l, ao a(o) 
•d 

ß cos' • -• (n 2 _ e+5(n' -- •-1) F(•, 0) (Ul) 
where n - (k_/•), G (0) is defined in (23), •a = 
• (•+•-•), c- Zo(h•/=)V8, 

- n sin 0 cos ½, and X - hfi/2. The remaining in- 

2(•s- l)('y- l)- (•+1- 1)(e-1- l)] U(1/h/5) (,y- 1) 1/2 •+• 

Equation 11, along with (B2), can be used to deter- 
mine the Jacobian for the transformation and the 

'f•7 ½=q- S2 1)½in XP•Jø'(btSq)Q(q' p)q dq s- Xp / (B3) 
where X = hfi/2, c• = ,ea" •o/(•o -- •8), 

a = pU + qU, and q0 = the unique positive real vane 
of q, which satisfies the equation Q-=(qo, p) = O. 
•e approximation of (B3) is considerably simplk 
fled ff we consider only vanes of •e plasma param- 
eters such •at X > y2 > 1. In this case a • eo, and 
the 'q' integration in (B3) can be easily perfomed 
in the li•t as b • 0 to yield 

(sin 
ß {p•[2 In (2/b•)- In P(p)] + •' cos -x V(p)} (B4) 

where 

v(v) = •v•+ r•_ • +4 r•_ • 

( r(v) = (•v) • + r•_ •. v- • (v) 
•,= x/(r •_ •)• 

•0 • • y2 •/2 • = •(r•/ - •) 
•0 

In the above inte•al, the term involving ln(2/bfl) 
can be integrated directly. •e rema•ing terms can 
be evaluated by the method used in append• A; 
i.e., the integral is split into two pa•s as in (A4) and 
•e sine function is replaced by its •ment h the 

4c f0 

new expression for (B 1 ) becomes 



first integral, whereas in the second integral, where 
p > (h/•)-•, the functions In P(p) and cos -•V(p) 
are expanded in inverse powers of p, and only the 
first two terms are retained. The resultant integrals 
can all be evaluated in a straightforward fashion 
with the following result: 

_ _• • + (r + •)•/•- •'•1 (•5) 4 12 

where .a = (Y•-/Y•--- 1 ) •, and • = h/•8 •/c•. 
The condition for the rapid convergence of the 

series expansion of In P(p) in inverse powers of p 
(i.e., p•- >> [2X/•(Y•-I)•]) sets the constraint on 
(h/•) for the validity of (BS): 

2X (B6) 
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