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Abstract—A steady state one-dimensional model is used to estimate the electron current along a
ﬁe}d lme from the auroral zone to the plasmasheet when a potential difference exists between its
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ends. The plasiias au Siss ond, the IGNHOSpILiv aiid the PHasIiasiacesy, arc assumed thermal.
When typical experimental values are substituted into the analytic expression obtained it is
found that potential differences of the order of 10kV are required to drive the field-aligned
currents sometimes observed.

One of the most controversial questions in magnetospheric physics is the importance

and magnitude of parallel electric fields. The magnetospheric plasma is for most purposes

collision free, the mean free path being much larger than typical length scales. The electric
field then causes a large rate of change of current and changes in electric field are liable to
set up plasma oscillations. Thus the plasma frequency indicates the timescale for variations.
Superficially at least parallel electric fields would be expected to be associated with parallel
currents and most simple-minded approaches suggest that they should be small or at least
readily neutralized, though Alfvén and co-workers state that real plasmas often contain
ﬁlamentary structures in which this is not so (Alfvén et al., 1964)

There is ample evidence for thin concentrated layers of field aligned current (Cloutier,
1971) and some theoretical understanding of their cause (Speiser, 1965; Cowley, 1973;
Willis, 1970). Field aligned currents are observed within the plasmasheet but most com-
monly at its outer edge (Aubry et al., 1972) or at the poleward edge of the aurora where
the layers typically have a thickness of about 10 km (Park and Cloutier, 1971; Choy et
al., 1971). Evidence for parallel electric fields in the form of auroral precipitation peaked
at low pltch angles has also been found near the poleward edge of the aurora (Whalen and
McDiarmid, 1972). The spectra obtained were consistent with a potential drop of about
7 KV concentrated in the last Ry or so above their rocket.

These parallel currents could be associated with waves but these would be propagating
at the Alfvén speed whereas the electrons accelerate to kV energies and move faster
than the Alfvén speed and so cannot stay in phase with such waves. Hence it may be
fruitful to consider a quasi-static solution for the electron current. However even in the
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steady state the equation of momentum transfer still contains an inertial term, which

could in principle balance the electric force. This would probably be at its largest when
the plasma is convected across a current layer, so that following the convection the current
density would rise and fall rapidly. A strictly one dimensional static formulation is possible
only if we have no plasma motion across the field tubes. This will be true in the absence
of convection or in cases when the current layer is moving with the convection speed. When
we have convection the time taken to cross the current layer will be the same all along the
field line. If the convection speed is 0-5 km/sec in the ionosphere where the sheet is 10 km
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thick this will be about 20 sec and in this time kV particles will cover several tens of Earth

radii. So the following one-dimensional formulation may still be reasonable as long as

the electric field remains roughly constant in this kind of time scale. This will be so if the

field results from the cross-tail electric field which surges with a period of about 20 min.
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STATIC FORMULATION

Let us consider a field line from the high latitude auroral zone to the neutral sheet,
along which the magnetic field strength decreases monotonically. Observations (Hones
et al., 1971) lead us to believe that it is reasonable to expect a Maxwellian steady state
solution far out on this field line, though possibly with a high energy tail and we will con-
sider the thermoelectric effect with essentially thermal plasmas at different temperatures
at either end of the field line, i.e. the ionosphere and the plasmasheet. We can estimate
the mean free path as 10* 7,2/N, cm (Alfvén et al., 1964). The temperature is high in the
plasmasheet, about a million deg, and the density is low, about 0-1-1 cm™3, so the
mean free path here is about 10'®cm (107 Rg). However the mean free path falls to
the order of 1Ry in the ionosphere, where the temperature is about 6000°K. and the density
is of the order of hundreds per cm®. Thus we can describe electron motion along this field
line by means of the collisionless Boltzmann equation.

Following Grebowsky (1968) we shall consider an electric field with the potential
higher at the ionospheric base level than at the plasmasheet base level and monotonic
between them. This gives us five distinct categories of electron trajectories (See Appendix).
At any point on the field line each of these occupies a distinct region of velocity space and
using Liouville’s theorem the distribution function in each of these is Maxwellian charac-
terized by the temperature at the originating base level. This does not give the distribution
function for that part of the electron population which may be trapped between the electric
potential barrier and the magnetic mirror but we are mainly interested in the parallel
current to which these do not contribute provided that their distribution is symmetric
inv.

lu“he equations of the loss cones at an arbitrary point are obtained from the equations of
conservation of energy and of the first adiabatic invariant in terms of the local potential
and those at the two bases.

To obtain the parallel current we need to integrate —ev), f(v) over all of velocity space.
Assuming a distribution symmetric in v for the trapped electrons the only contribution
to the current comes from the ‘straight through’ trajectories, those from the plasmasheet
in velocity space region S; and those from the ionosphere in region E; which is the negative
vy, counterpart of §;. Hence we require

jy = —e fs 0y(fis — f)

where

o= N () "exp [~ 2 ou 4 o) + 25 6 = 4)
T T \2nkTy 2%Ty = N kT ¥y

The subscripts Y on the density N, the temperature T and the potential ¢, refer to the
values at the ionospheric, E or plasmasheet, S, bases.

On performing this integral the current density is found to be proportional to the
magnetic field strength and independent of the behaviour of the electric potential as long
as this does not have a significant minimum.

From the Appendix the parallel current is

jy=eB [NE\/ (32)sa, 70— Ns\/ () exp(A/KTE(A, 7]
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where
gA,T) = i[exp (_ A) _Br—Bs . (_é_ By )]
By Bg kT By — Bg

and A =e(¢p — ¢,) =0
By = magnetic field strength at base Y
m = mass of the electron.

We shall take the typical polar wind flux (protons) (B/Bg)N +/(kT/M) as a convenient
unit to measure the current in where N = N by quasi-neutrality at ionosphere and 7 = T},
if protons are in thermal equilibrium with the ionospheric electrons. Putting t = T[T,
n = Ng/Ny and x = A[kTy, a dimensionless potential energy drop we get

e_lf_NEi} (@E) - \/(me) { |: (BSB; BE) exp (—xBs/(Bg — Bg)) + %Esjl e v
Bg M

-[Bg — B B
— 1| PEEE exp (—xB (B — Bo) + —E]} L)
By B
In the upper ionosphere By ~ 3 — 6 X 10% whereas near the neutral sheet Bg ~ 10y
and ¢ is always greater than unity. So as long as x(Bg/Bg) <1 and x[t(Bg/Bg) <1 we
can expand and truncate the exponentials to obtain

j M Bg — B B B
TRt e s R
QN kﬂv 27Tm BS BE—BS BS
By "\ M

_BS—BE( X BS ) BE]}
—nfi|E=2E( X _Ps 4 ), 3E
n‘/[ B 1B,— By )V

e @

For no potential difference j; oc (I — nV'1) and for infinite potential difference j; oc —mV't

X (Bg/Bg) from result (1). Therefore if #V/t < 1 the current will go to zero for a non-zero
potential drop. From the approximation (2) it will be seen that the current will be negative,
i.e. away from the Earth, when the potential is such that

(1 + x) exp(—x) < .

So the highest potential difference giving no current occurs for the lowest value of #V/z.
Using the observational results

Ng=01-1cm Tg = 10°K
Ny = 100 — 400 cm™3 Ty = 103 — 10°K
n=3x 10— 102 t = 102 — 108

the extreme values of #V'¢ are 0-3 and 0-003. The corresponding dimensionless potential
drop for no current is then in the range 2 — 8, well within the range of validity of the
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approximation used. We can regard (2) as giving the density ratio in terms of the null
current potential difference, x, at a given temperature ratio ¢
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FiG. 1. GRAPH FOR CURRENT ZERO.
Density ratio against dimensionless potential drop for zero electron current,

From Fig. 1 it is easily seen that even the most extreme probable density ratio, n = 108
(Ng = 102cm™3, Ny = 103cm™®) gives null current potential difference between 10-5
and 11-5 in dimensionless units for temperature ratios between 10% and 10%. Beyond this
zero increasing potential exponentially kills off the ionospheric contribution (when
I+xe* <L nV't) and the current profile goes linearly like —nV7(1 + x/t) until
the second approximation, x < By!/Bg is no longer valid, whereupon the current rapidly
limits (Figs. 2 and 3). It is conceivable however that a minimum of electrostatic potential
could be set up somewhere along the field line, effectively concentrating the field towards
the jonospheric end. When we do have a significant minimum between the bases six
distinct electron trajectories are possible, reflection of plasmasheet electrons now being
possible at the potential barrier as well as at the ionospheric magnetic mirror. However
at the minimum itself we have only three categories and we get the following simple expres-
sions for the density and the electron flux towards the Earth at the minimum, taking the
zero of electrostatic potential there for convenience.

Nmin = Ngexp (—eds/kTgll — $F*(Tg)] + Ng exp (—edg/kTp)F¥*(Tx)

kT, kT,
T = Ny 0 (—ebl¥To) | (K22 FT ~ Ny exp (—ealb) | (22 rer)
™m 27m
where
FHT) =1 — \/ (BE — Bmm) exp (_ ¢$r _ Buin )
BE kT BE - Bmin
and

F(T) =1— BE - Bmin exp (_ g¢_E‘ Bmin )
By kT B — Bpin
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Fig. 2. CURRENT—POTENTIAL RELATION NEAR ZERO CURRENT.

Both in dimensionless units (see text). Density ratios lower than 10-¢ omitted for clarity.
Current positive towards the Earth,

Dimensionless current
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F1G. 3. CURRENT-POTENTIAL RELATION UP TO LIMITING.

Showing variation proportional to density ratio for a range of temperature ratios. Current
away from the Earth.

Define a dimensionless current C by referring Ji;, to the unit of polar wind flux i.e.

- emin
eEm_mNE\/(’i&)
By M

c~ \/ (L) i—i{exp (—edu/kTp)F(Ty) — ff’—: eXP(”e¢s/kTs)\/ (;}:ﬁ) Fry)
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which is the same result as in (1) but with the following replacements

Ngexp (—edg/kTy)

forn
Ng
Bmin for BS
ﬁsg for x.
kTg

So now the limiting negative current, flux towards the Earth, given by

- (e bt () e

is a function of the position of the minimum and so if this is close to the Earth a substantial
reduction in the maximum possible outward current results (Fig. 4). The variation with
n and ¢ is just the same as before (Figs. 2 and 3) except that » can now be reduced by a
deepening of the minimum corresponding to an increased (positive) ¢g. Near zero current
the current-potential profile becomes independent of the position of the minimum and so is
almost exactly the same as for no minimum.

CONCLUSIONS

We have obtained an estimate of the current carried by the electrons along field lines,
assuming that their higher mobility makes their’s the dominant contribution. The exis-
tence of an electric field directed out of the ionosphere will have no effect on the normal
polar wind proton flux which can be regarded as carrying a current of 0-4 eNg/(kTx/M).
We can use the results of this calculation to infer the potential drop causing a given current
density, though without simultaneous measurements of the base level plasma conditions
this will not be much better than an order of magnitude estimate.

If we take the ionosphere base temperature and density to be 6000°K and 10° cm—2
respectively our dimensionless current unit has magnitude 1-12 X 10~% A/m? corresponding
to a flux of 7 x 108 particles/cm® sec. The observations of transverse magnetic pertur-
bation give the current intensity in the auroral zone ionosphere in the range 0-02 — 0-7 A/m
(Zmuda et al., 1970) and extrapolations of data from OGO-5 in the tail give values between
0-2and 0-5 A/m (Aubry et al., 1972). To get the current density we must know the thickness
of the current layer, a value of about 10 km probably being reasonable although arguably
they are sometimes much thicker than this (Armstrong and Zmuda, 1970). Thus the
observed current densities are in the range 2 X 10— 7 X 105 A/m? or 1-65 in our
dimensionless units. This is consistent with Injun-5 observations of peak isotropic
downward fluxes of about 10'%/cm? sec sr (Frank and Ackerson, 1971).

Taking the density ratio, n = 1072, the temperature ratio, f = 10% and the magnetic
field strength ratio 10% we see from Fig. 3 that a potential energy difference of 1-2 X 10*KTg
is required to drive a dimensionless current of 20, so we need a voltage drop of 6 kV in
order to have a current density at the ionosphere directed away from the Earth of 2 x 10-5
A[m? A similar magnitude of current density directed towards the Earth results if there is
zero voltage drop (see Fig. 2).

From Fig. 4 we see that by bringing the minimum of potential towards the Earth it is
possible to reduce the current obtained at a given potential provided that this is significantly
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FIG. 4. CURRENT—POTENTIAL RELATION FOR DECREASING VALUES OF R = Byp[Bpmi;, DENSITY
RATIO IS 10~% AND TEMPERATURE RATIO 10%,

greater than that for no current at the prevailing values of the temperature and density
ratios. The potential is controlled by the proton density and density observation would
greatly help to decide on the relevance of the models considered here.
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APPENDIX

Loss-cones

The equations of conservation of energy and first adiabatic invariant give

' 2e ’ 2e
UL,2+0“2—;1‘¢ =UJ_2+U”2—Tn'¢

and v,'?/B’ = v,%/B where primes denote values at a base, unprimed quantities at an
arbitrary point on the field line. For a trajectory to pass through the appropriate base
we need »"2 > 0 which gives

2e ., . B’
;e(qS — @)+, (1—§)+v|,2>0.

So trajectories passing though the ionosphere base must occupy a region 4 of velocity
space satisfying this equation with ¢ for ¢’ and By for B’ and those through the plasma-
sheet base a region B where ¢g, Bg are read for ¢, B’ respectively.

Now if ¢z > ¢ > ¢g and By > B > By the region A lies between the hyperbola
Cg’,® —v)® = Dg* and the v, = 0 axis and the region B lies outside the ellipse
Cgv,® + v)? = Dg® where

Csf=1—BglB D' =2(4— o)

CE2 = BE/B —1 DE2 = gnf(‘lsza - 95)-

In the case of a monotonic potential

The straight through trajectories E;,, S, C 4 N B

the trapped trajectories TCANB

from ionosphere not reaching sheet E, C 4 N B

from sheet not reaching ionosphere S, C 4 N B.
Where the not-bar indicates the complement and these five disjoint regions account for all
of velocity space. If, however, there is a minimum, i.e. a point where ¢ < ¢g, region B
becomes all of velocity space at that point and B is null. Thus there are the straight through

trajectories, E; and .S, in region A and trajectories from the plasmasheet not reaching the
ionosphere, S;, in its complement obviously occupying all of velocity space.

The current integral
The parallel current is given by

= —3L0||(fs — fg) d%

where X in the region 4 N Bforv; >0
and

fr =Nr(

27rkTy)3/2exP{ T (0, + o))+ ——($— ¢Y)}.

2Ty kTy
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Thus
Jy = —e{exp [e(¢ — $x)/kT5INsI(Ts) — exp [e($ — )/ kTEINl(T)} 3
where
m 3/2
I(T) = (2 ) wffv"vl exp( 'L-mvzlkT) dU" va_
wkT
In general the loss cones intersectatvy = ¥V where V2= (C5®Dg? — Ci®Dg?)[(Cg® + Cg®)

so for ¥ < vy < Dgthe limits of v, wﬂl be+/([Dg? — v/ C® to \/ ([v)* + Dg%/Cg®) and
for vy > Dg from 0 to 4/([v® 4+ Dg*l/Cg?). To simplify the integration put 4% = m/2KT,
X = Avl, y = AU”

Thus

fw 1+ 4 D0

1m=-% { f yexp (—y®) dy d[—exp (—x/2]

2.1/

ADs (TI .4 Dx y''/Cx
+ f Y exp (—y%) dy f d(—exp (~x2)/2)}

2 21/2

D05
= \/w{exp (—4*Dg%) [1 - ’1_:(%/55]
_ ITW exp (_ A’[Dg’ + g:ﬂ(CEz + 1)])
T - (- 4Dt + écszsz _ mﬂl)}

= \/ (2":;) exp [9(951;:‘71 ¢)] {B_S exp (e(¢skT ¢E))

+ (5535 = (e=as)

Defining A = e(dz — $g) We can write

KT) = \/ (ikl‘) exp [e(¢z — $)/kT]Bg(A, T)
wm

where

B

gA, T) = L exp (~A[kT){1 _Be—Bs exp [ A/kT( )]}
and thus the parallel current is

jr = ‘“eB{eXP(A/kTs)Ns\/ (=) eta. 79 - NE\/ (2 ) . 7).

If there is a minimum of potential on the field line it is logical to take this as the zero of
potential. The current is given by the same formula (3) but the integral now involved in

3/2 Yol *+DsN/0x d ~1/2mo2/kT
dv vioyv, e
1= (z kT) f "f o
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where Dt is now (2¢/m)¢y and Cg* = (Bg/Bum) — 1

3 ® \ Vis'+ 4 Dok .
I(T)= T J; dyyexp (—y )J; x exp (—x%) dx

substituting m/2kT = A% and A2V“2 =% A%V |2 = x?

2 [* 2 1[: (-(y2+A2DE2))]
I(T)y=—"— ] dyy -y =1 — — 1 CE ]
(T) Ay do yy exp ( y)2 exp chF

-G

FT)=1— g—E—;—Bm—mexp [——eqSE/kT( :E — 1)]

E min

where

We can calculate the density at the minimum.
Noin = [ fod®o + [ fsa%
E1 El

=fEl[fE - fS] dau + f&ll velocityfs dsv

space

= Ngexp (—edg/kTp)[*(Tg) — Ngexp (—eds/kTHI*(Tg)

+ Ngexp (—edg/kTy)
where

m 2 w V(o) *+Dz5")/Cx
I*(T) = ( ) 27Tf dv,,f dv, v, exp (—imv/kT)
27kT 0 0

making the same substitution we see that

y2 + Az DEz)]
Cg’

== (B eon et (2 - 1)

= }F¥(T) defining F*(T).

IT) = ﬁ J; “dy exp (— ) [l — exp (—




