The Physics of Space Plasmas

Auroral and Polar Cap Phenomenology

William J. Burke
19 September 2012
University of Massachusetts, Lowell
This lecture deals primarily with electromagnetic coupling between the interplanetary medium and the high-latitude ionosphere.

What do high-latitude convection / potential distributions look like?
- How do they vary with the IMF’s orientation?
- What is the polar cap potential (Φ_{PC})?
- How does Φ_{PC} depend on the IMF?
- What happens when IMF B_Z turns northward?

We have all seen schematics of the Region 1 – Region 2 system
- How do they come about?
- What are their relationships with particle precipitation electric field patterns?
- What happens when IMF B_Z turns northward?

How do electromagnetic forces couple the ionosphere and magnetosphere?
While this 2-D model has heuristic value for pointing out how the Dungey magnetosphere works, it seemed to contain seeds of its own rejection.

Walter Heikkila often pointed out that along the sub-solar merging line the electric field and currents were in the same direction!

“How can a load drive the magnetosphere?”
A second issue concerned the generalization of the Dungey model to 3D:

- Component merging hypothesis (Bengt Sonnerup)
- Anti-parallel merging hypothesis (Nancy Crooker)
Large-scale system of FACs observed by TRIAD during relatively quiet (left) and disturbed (right) conditions

- R1 and R2 expand colatitude ranges
- Cusp-related current system not yet identified
Large-scale system of FACs observed by TRIAD during the recovery (left) and expansion (right) phases of substorms

- Small scale FACS associated with discrete auroral forms do not in this global-scale picture
- The infinite current sheet approximation
Aurorae and Polar Cap

Dayside FAC System
Erlandson et al., JGR, 1988

- From $\nabla \times B = \mu_0 j$ considerations, positive/ negative ΔB_E slopes indicate current into / out of ionosphere.
- The existence / polarity of the cusp current system is IMF B_Y dependent.
- *Erlandson* saw cusp currents as extensions of Region 1 past local noon.
Aurorae and Polar Cap

Particle Electric / Magnetic Field Measurements

\[E \]
\[B \]
\[V_{\text{sat}} \]

Fluxgate Magnetometer

Ion Drift Meter
\[V_H, V_V \]

Electrostatic Analyzer
Before examining E and B data, as a guide it is useful to reflect on what to expect in measurements.

We consider a satellite in circular polar orbit that carries an electric field sensor and a magnetometer.

We assume that in the polar cap E is directed dawn to dusk.

In the specified satellite centered coordinate system

E_X => positive along s/c velocity

ΔB_Y => positive in antisunward

Earth cross section along the dawn-dusk meridian as viewed from the lunar surface.
Aurorae and Polar Cap

Heppner-Maynard, JGR, 1987

Northern Hemisphere:
\[B_Y < 0, \ B_Z < 0 \]

Southern Hemisphere:
\[B_Y > 0, \ B_Z < 0 \]
Northern Hemisphere:
\[B_Y > 0, \quad B_Z < 0\]

Southern Hemisphere:
\[B_Y < 0, \quad B_Z < 0\]
Space Plasma & Field Sensors

Methodology used by Heppner and Maynard (JGR, 4467, 1987) to construct Potential / convection patterns.

Model A appears in summer polar cap when IMF B_Y polarity would drive strong convection along dusk flank of polar cap.

Model BC

Model DE
Aurorae and Polar Cap

Model BC

IMF $B_Z < 0$

Northern-hemisphere passes

\[IMF\ B_Y > 0 \]

\[E_X \text{ is positive along direction of s/c motion} \]

Southern-hemisphere passes

\[IMF\ B_Y < 0 \]

Integrate E_X along trajectory, then connect equipotentials

Image 33x478 to 176x519

Image 618x480 to 672x534

Image 0x29 to 720x452
More current overcomes neutral drag on ion convection across summer polar cap

\[\mathbf{j} \times \mathbf{B} = \nu_n (\mathbf{V}_i - \mathbf{V}_n) \]
Aurorae and Polar Cap

Equivalent current system and external driving with IMF $B_Z > 0$

Maezawa, JGR, 2289. 976
The NASA Explorer Series

Burke et al., GRL, 21, 1979

[Diagram showing solar wind data and magnetic field readings]
Before examining E and B data, it is useful as a guide to think a bit about what we might expect to see in the measurements:

- We consider a satellite in circular polar orbit.
- That carries an electric field sensor and a magnetometer.
- We assume that in the polar cap E is directed dawn to dusk.
- In the specified satellite centered coordinate system, E_X is positive along s/c velocity, and ΔB_Y is positive in antisunward.
Distorted BC potential/convection patterns with IMF BZ “weakly” (left) and “strongly” (right) positive
MAGSAT measurements acquired during six consecutive southern hemisphere passes on 8 January 1980 while IMF B_z was strongly positive. Iijima et al., 7774, 1984

NBZ current system
Aurorae and Polar Cap

MAGSAT ΔS measurements from four southern high-latitude passes on 8 Jan. 1980

NBZ current system
Aurorae and Polar Cap

Dayside Precipitation Pattern
Newell and Meng, GRL, 1992

Dayside FAC System
Erlandson et al., JGR, 1988

Heppner - Maynard Convection Patterns *(JGR, 1987)*
Aurorae and Polar Cap

Nopper and Carovillano, GRL 699, 1978

Region 1 = 10^6 A
Region 2 = 0 A

Region 1 = 10^6 A
Region 2 = 3×10^5 A

Independent studies using AE-C, S3.2 and DE-2 measurements of Φ_{PC} all showed that the highest correlation was obtained with

$$\Phi_{PC}(kV) = \Phi_0(kV) + \alpha V_{SW} B_T \sin^2(\theta / 2)$$

$$B_T = \sqrt{B_Y^2 + B_Z^2}$$

$$\theta = B_Z / B_T$$

Interplanetary electric field given in mV/m. Since 1 mV/m ≈ 6.4 kV/ R_E

$L_G =$ width of the gate in solar wind (~ 3.5 R_E) through which geoeffective streamlines (equipotential) flow.

Burke, Weimer and Maynard,

JGR, 104, 9989, 1999.
Aurorae and Polar Cap

Dynamics Explorer 1
135.6 nm image of
auroral oval and Theta aurora

Frank et al., JGR, 1986
Aurorae and Polar Cap

Reiff and Burch, JGR 1595, 1985
Aurorae and Polar Cap