The Physics of Space Plasmas

Auroral and Polar Cap Phenomenology

William J. Burke 19 September 2012 University of Massachusetts, Lowell

Lecture 3

- This lecture deals primarily with electromagnetic coupling between the interplanetary medium and the high-latitude ionosphere.
- What do high-latitude convection / potential distributions look like?
 - How do they vary with the IMF's orientation?
 - What is the polar cap potential (Φ_{PC}) ?
 - How does Φ_{PC} depend on the IMF?
 - What happens when IMF B_Z turns northward?
- We have all seen schematics of the Region 1 Region 2 system
 - How do they come about?
 - What are their relationships with particle precipitation electric field patterns?
 - What happens when IMF BZ turns northward?
- How do electromagnetic forces couple the ionosphere and magnetosphere?

Dungey, Phys. Rev. 1961

- While this 2-D model has heuristic value for pointing out how the Dungey magnetosphere works, it seemed to contain seeds of its own rejection.
- Walter Heikkila often pointed out that along the sub-solar merging line the electric field and currents were in the same direction!

"How can a load drive the magnetosphere?"

A second issue concerned the generalization of the *Dungey* model to 3D

- Component merging hypothesis (Bengt Sonnerup)
- Anti-parallel merging hypothesis (Nancy Crooker)

Iijima and Potemra, JGR, 83, 599,1978

Large-scale system of FACs observed by TRIAD during relatively quiet (left) and disturbed (right) conditions

- R1 and R2 expand colatitude ranges
- Cusp-related current system not yet identified

Iijima and Potemra, JGR, 83, 599,1978

Large-scale system of FACs observed by TRIAD during the recovery (left) and expansion (right) phases of substorms

- Small scale FACS associated with discrete auroral forms do not in this global-scale picture
- The infinite current sheet approximation

Dayside FAC System

Erlandson et al., JGR, 1988

- From $\nabla \times B = \mu_0 j$ considerations, positive/ negative ΔB_E slopes indicate current into / out of ionosphere
- The existence / polarity of the cusp current system is IMF $B_{\rm Y}$ dependent
- Erlandson saw cusp currents as extensions of Region 1 past local noon.

Particle Electric / Magnetic Field Measurements

Electrostatic Analyzer

Earth cross section along the dawn-dusk meridian as viewed from the lunar surface

- Before examining *E* and *B* data, as a guide it is useful to reflect on what to expect in measurements
- We consider a satellite in circular polar orbit that carries an electric field sensor and a magnetometer
- We assume that in the polar cap E is directed dawn to dusk
- In the specified satellite centered coordinate system

 $E_X =>$ positive along s/c velocity

 $\Delta B_Y =>$ positive in antisunward

Heppner-Maynard, JGR, 1987

Northern Hemisphere : $B_Y < 0, \ B_Z < 0$

Southern Hemisphere:

$$B_Y > 0, B_Z < 0$$

Space Plasma & Field Sensors

Heppner-Maynard, JGR, 1987

Northern Hemisphere:

$$B_{Y} > 0, B_{Z} < 0$$

Southern Hemisphere:

$$B_Y < 0$$
, $B_Z < 0$

Space Plasma & Field Sensors

Methodology used by
Heppner and Maynard
(JGR, 4467, 1987)
to construct
Potential / convection
patterns

H-M "pattern recognition" technique later quantified by *Weimer* (JGR, 23,639, 1995)

Model A
Appears in summer
polar cap when IMF B_Y
polarity would drive
strong convection along
dusk flank of polar cap

Model DE

Northern-hemisphere passes

 $IMF B_{Y} > 0$

 E_{x} is positive along direction of s/c motion

Southern-hemisphere passes

 $IMF B_{Y} < 0$

Integrate E_x along trajectory, then connect equipotentials

Model BC

Smiddy et al., JGR, 85, 6811 1980

Winter Hemisphere

Summer Hemisphere

More current overcomes neutral drag on ion convection across summer polar cap

$$\vec{j} \times \vec{B} = V_{in}(\vec{V}_i - \vec{V}_n)$$

Equivalent current system and external driving with IMF $B_Z > 0$ Maezawa, JGR, 2289. 976

The NASA Explorer Series

Burke et al., GRL, 21, 1979

Earth viewed from lunar surface

- Before examining E and \underline{B} data It is useful as a guide to think a bit about what we might expect to see in the measurements
- We consider a satellite in circular polar orbit
- •That carries an electric field sensor and a magnetometer
- We assume that in the polar cap E is directed dawn to dusk
- In the specified satellite centered coordinate system

 $E_X =>$ positive along s/c velocity

 $\Delta B_Y =>$ positive in antisunward

Distorted BC potential/convection patterns with IMF BZ "weakly" (left) and "strongly" (right) positive

NBZ current system

Dayside Precipitation Pattern Newell and Meng, GRL, 1992

Dayside FAC System Erlandson et al., JGR, 1988

Heppner - Maynard Convection Patterns (JGR, 1987)

Nopper and Carovillano, GRL 699, 1978

Region 1 = 10^6 A Region 2 = 0 A

Region 1 = 10^6 A Region 2 = 3.10^5 A

Wolf, R. A., Effects of Ionospheric Conductivity on Convective Flow of Plasma in the Magnetosphere, JGR, 75, 4677, 1970.

Independent studies using AE-C, S3.2 and DE-2 measurements of Φ_{PC} all showed that the highest correlation was obtained with

$$\Phi_{PC}(kV) = \Phi_0(kV) + \alpha V_{SW} B_T Sin^2(\theta/2)$$

$$B_T = \sqrt{B_Y^2 + B_Z^2}$$

$$\theta = B_Z / B_T$$

Interplanetary electric field given in mV/m. Since 1 mV/m \approx 6.4 kV/ R_E L_G = width of the gate in solar wind (\sim 3.5 R_E) through which geoeffective streamlines (equipotential) flow.

Burke, Weimer and Maynard, JGR, 104, 9989, 1999.

Dynamics Explorer 1 135.6 nm image of auroral oval and Theta aurora Frank et al., JGR, 1986

Reiff and Burch, JGR 1595, 1985

