The Physics of Space Plasmas

Auroral and Polar Cap Phenomenology

William J. Burke 19 September 2012 University of Massachusetts, Lowell

Lecture 3

- This lecture deals primarily with electromagnetic coupling between the interplanetary medium and the high-latitude ionosphere.
- What do high-latitude convection / potential distributions look like?
 - How do they vary with the IMF's orientation?
 - What is the polar cap potential (Φ_{PC}) ?
 - How does Φ_{PC} depend on the IMF?
 - What happens when IMF B_Z turns northward?
- We have all seen schematics of the Region 1 Region 2 system
 - How do they come about?
 - What are their relationships with particle precipitation electric field patterns?
 - What happens when IMF BZ turns northward?
- How do electromagnetic forces couple the ionosphere and magnetosphere?

- While this 2-D model has heuristic value for pointing out how the Dungey magnetosphere works, it seemed to contain seeds of its own rejection.
- Walter Heikkila often pointed out that along the sub-solar merging line the electric field and currents were in the same direction! <u>"How can a load drive the magnetosphere?"</u>

A second issue concerned the generalization of the *Dungey* model to 3D • Component merging hypothesis (*Bengt Sonnerup*)

• Anti-parallel merging hypothesis (Nancy Crooker)

Iijima and Potemra, JGR, 83, 599,1978

Large-scale system of FACs observed by TRIAD during relatively quiet (left) and disturbed (right) conditions

- R1 and R2 expand colatitude ranges
- Cusp-related current system not yet identified

Iijima and Potemra, JGR, 83, 599,1978

Large-scale system of FACs observed by TRIAD during the recovery (left) and expansion (right) phases of substorms

- Small scale FACS associated with discrete auroral forms do not in this global-scale picture
- The infinite current sheet approximation

- From $\nabla \times B = \mu_0 j$ considerations, positive/ negative ΔB_E slopes indicate current into / out of ionosphere
- The existence / polarity of the cusp current system is IMF B_Y dependent
- Erlandson saw cusp currents as extensions of Region 1 past local noon.

Particle Electric / Magnetic Field Measurements

Earth cross section along the dawn-dusk meridian as viewed from the lunar surface

- Before examining *E* and *B* data, as a guide it is useful to reflect on what to expect in measurements
- We consider a satellite in circular polar orbit that carries an electric field sensor and a magnetometer
- We assume that in the polar cap *E* is directed dawn to dusk
- In the specified satellite centered coordinate system
 E_X => positive along s/c velocity
 ∠*B_Y* => positive in antisunward

Heppner-Maynard, JGR, 1987

Northern Hemisphere:

 $B_Y > 0, B_Z < 0$

Model BC

Southern Hemisphere: $B_Y < 0, B_Z < 0$

Methodology used by *Heppner and Maynard* (JGR , 4467, 1987) to construct Potential / convection patterns

Model A

Appearsinsummerpolar capwhenIMF Bypolaritywoulddrivestrongconvectionalongduskflankofpolar

H-M "pattern recognition" technique later quantified by *Weimer* (JGR, 23,639, 1995)

Smiddy et al., JGR, 85, 6811 1980

Winter Hemisphere

More current overcomes neutral drag on ion convection across summer polar cap

$$\vec{j} \times \vec{B} = v_{in}(\vec{V_i} - \vec{V_n})$$

Equivalent current system and external driving with IMF $B_Z > 0$ Maezawa, JGR, 2289. 976

Burke et al., GRL, 21, 1979

• Inner cells represent stirring of open flux

Distorted BC potential/convection patterns with IMF BZ "weakly" (left) and "strongly" (right) positive

Distorted DE potential/convection patterns with IMF BZ "weakly" (left) and "strongly" (right) positive

MAGSAT measurements acquired during six consecutive southern hemisphere passes on 8 January 1980 while IMF B_Z was strongly positive. *Iijima et al.*, 7774, 1984

MAGSAT ∆S measurements from four southern high-latitude passes on 8 Jan. 1980

Ion Velocity Dispersion Effect

Dungey, 1961

Maezawa, 1976

Highest energy ions at equatorward boundary of the cusp

Highest energy ions at poleward boundary of the cusp

Reiff and Burch, JGR 1595, 1985

Dayside Precipitation Pattern *Newell and Meng*, GRL, 1992

Dayside FAC System Erlandson et al., JGR, 1988

Heppner - Maynard Convection Patterns (JGR, 1987)

Nopper and Carovillano, GRL 699, 1978

Wolf, R. A., Effects of Ionospheric Conductivity on Convective Flow of Plasma in the Magnetosphere, JGR, 75, 4677, 1970.

Independent studies using AE-C, S3.2 and DE-2 measurements of Φ_{PC} all showed that the highest correlation was obtained with

LLBL potential $\Phi_{PC}(kV) = \Phi_0(kV) + \alpha V_{SW} B_T Sin^2(\theta/2)$ $B_T = \sqrt{B_Y^2 + B_Z^2}$

 $\theta = B_Z / B_T$

- Interplanetary electric field (IEF) in mV/m. Since 1 mV/m \approx 6.4 kV/ R_E
- $L_G =>$ width of the gate in solar wind (~ 3.5 R_E) through which geoeffective streamlines flow.

Burke, Weimer and Maynard, JGR, 104, 9989, 1999.

Dynamics Explorer 1 135.6 nm image of auroral oval and Theta aurora *Frank et al.*, JGR, 1986

• Before examining *E* and <u>*B*</u> data It is useful as a guide to think a bit about what we might expect to see in the measurements

- We consider a satellite in circular polar orbit
- •That carries an electric field sensor and a magnetometer
- We assume that in the polar cap *E* is directed dawn to dusk
- In the specified satellite centered coordinate system
 E_X => positive along s/c velocity
 ∠*B_Y* => positive in antisunward