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ABSTRACT

As research instruments of large information capacities become a reality, automated
systems for intelligent data analysis become a necessity. Scientific archives containing
huge volumes of data preclude manual manipulation or intervention and require
automated exploration and mining that can at least pre-classify information in categories.
The large dataset from the radio plasma imager (RPI) instrument onboard the IMAGE
satellite shows a critical need for such exploration in order to identify and archive
features of interest in the volumes of visual information. In this research we have
developed such a pre-classifier through a model of pre-attentive vision capable of

detecting and extracting traces of echoes from the RPI plasmagrams.

The overall design of our model complies with Marr's paradigm of vision where
elements of increasing perceptual strength are built bottom up under the Gestalt
constraints of good continuation and smoothness. The specifics of the RPI data, however,
demanded extension of this paradigm to achieve greater robustness for signature analysis.
Our pre-attentive model now employs a feedback neural network that refines alignment
of the oriented edge elements (edgels) detected in the plasmagram image by subjecting
them to collective global-scale optimization. The level of interaction between the oriented
edgels is determined by their distance and mutual orientation in accordance with the Yen
and Finkel model of the striate cortex that encompasses findings in psychophysical

studies of human vision. An additional effort has been made to pre-process the raw image



data to eliminate noise and to detect, interpret and remove the resonance signatures that

resulted from the local response of the plasma to the RPI signal.

The developed models have been implemented in an operational system
“CORPRAL” (Cognitive Online Rpi Plasmagram Ranking Algorithm) that currently
scans daily submissions of the RPI plasmagrams for the presence of echo traces.
Qualifying plasmagrams are tagged in the mission database, making them available for a
variety of queries. An analysis of the performance of CORPRAL is given and directions

for future research are outlined.



ACKNOWLEDGEMENTS

| dedicate this work to my parents whom | had to leave behind in pursuit of my

research.

To my father, a Physicist, an Antarctic expeditionist, a man of penetrating kindness

and a big, tragically fragile heart.

To my mother, for bringing me to light in many ways and for making those hard

decisions that shaped my future.

My work would not come to fruition if it were not for the people that | thank here

most:

My wife, Elena, for her love, care and patience over the many years of my studies.
Together with our lovely daughter, Katerina, we have built the foundation for this

work.

Prof. Bodo Reinisch, my preceptor and advisor for 11 years at the Center for
Atmospheric Research, for opening doors to the worlds | have never known and

then leading the way.

Prof. Georges Grinstein, my thesis adviser at Department of Computer Science, for
deep insights in what | was trying to accomplish, for much needed encouragement,

and thoughtful suggestions.



Prof. Haim Levkowitz, the Dissertation Committee member, for interest, support, and

contributions to the project.

Grigori Khmyrov and Alexander Kozlov, my felloRussian Troikamembers of the

software development team at UMLCAR, for countless contributions to the project.

Prof. Gennadii Ososkov (JINR, Dubna) and Elena Zaznobina (lvanovo State
University), for sparking my interest in neurodynamic systems and important

contributions to the ANNA algorithm.

Prof. Gary Sales (UMLCAR), for continuing interest, encouragement, and

proofreading of the manuscript.

Prof. Steven Neshyba (University of Puget Sound) and Prof. Robert Gamache

(UML), for lending their helping heart and hand during my first years in the USA.

My research in the intelligent systems at University of Massachusetts Lowell was
funded in part by NASA under subcontract 83822 to the Southwest Research Institute
and through the IS Grant NAG5-13387. | gratefully acknowledge valuable discussions
and suggestions from the RPI team members, especially Drs. Robert Benson (NASA),
Don Carpenter (Stanford University), and Shing Fung (NASA). | would like to thank
Prof. Leif Finkel (UPenn) and Prof. Mark Matlin (Sarah Lawrence College) for
discussions, demonstrations, and technical assistance with the Yen and Finkel early

vision model.



| am grateful to Prof. Charles Steele for his word of support when | needed it most,
and to Prof. George Cheney and Prof. James Canning for the inspiration. 1 would also
like to thank the radio propagation group at Siberian Institute for Solar-Terrestrial
Physics for the unforgettable early years of my research in Irkutsk and my fellow

students, Urska Cvek and Marjan Trutschl, for their help and continuing interest.

Vi



TABLE OF CONTENTS

= 1S I 2 3 PR TR
ACKNOWIEAGEMENTS ...ttt ettt b e e e er e e s nans iv
TABLE OF CONTENTS . ...ttt ettt e e s sste e sntae e e nnee e e s neeeenneee s vii
TABLE OF FIGURES ..ottt ettt stee e stee e s ee e e s snnae e e nnseeeaneeens iX
CHAPTER 1.  INTRODUCTION......uttiiiitieiitieeeeitieesieee e see e srae e e s nsae e s snsanesneaeeneeens 1
1.1, SCOPE QN GOAIS......eeiiiiiiiiiie ettt e s e nre s 3
O . - o PRSPPI 4..........
CHAPTER 2. RADIO PLASMA IMAGER DATASET .....ccooiiiiieeieeiie e 7
2. 1. Radio Plasma IMAGET........cuuiiiiiiiiiie ettt e e ne e e e e nes 7
2.2, RPIPIASMAGIAIMS ....cciiiiiiiiiiieieee ettt sne e e nnee s 8
2.2.1. Plasmagram TIACES .....coiiiuiiiie it ee et ee st e e e ee e e e annees 10
2.2.2. Plasmagram RESONANCES.........coiiiiuiiiiieiiii et ee e eaeae e 12
2.3.  RPIData AvalanChe ... e 14
CHAPTER 3. PREVIOUS WORK ..ottt ettt 17
3.1, Marr's Paradigm Of VISION........cooi it 17
3.2. Transition from Raw Image to EAQeIS .......ccuvvviiiiiiiiiie e 19
3.3. Transition from Edgels to CONtOUIS .........coiiiiiiiiiiee et 21
3.3.1. Local grouping teCNNIQUES........ocuuiiiiiie e 22
3.3.2.  Global grouping teChNIQUES ........ccoiiiiiiie e 27
I © 11 (o o | 45
CHAPTER 4. TRACE reCOgNItION .....eiiiiiiiiiiiie ettt s 46
4.1. Unigqueness of Plasmagram Signatures ...........cccccueveeiiiiiieeeniiieee s ssieeee e s 46
4.1.1. Variable Signal-to-Noise RatioS............ccccuveeiiiiiiie e 47
4.1.2. RANGE JITEET .o 50
4.1.3. Closely SPaced TraCeS ......ccueieeiiieeieeeciieie et s et e e s ee e e e re e e 52
4.1.4. Range and Frequency Resolution Artifacts..........ccccooeriiiieiie e 52
A Y o] o] o Y- T o [PPSR 53
4.3. Transition from Raw Image t0 EAQelS ........occoviiieiiiiiiieieeceee e 56
4.4. Transition from EAgels t0 ROLOIS .......cooiiiiiiiiiie e 61
4.5.  Transition from Rotors to SalienCy Map.........ccovveveeiiiiiiiei e 62
45.1.  Co-circular Rotor Model NeurodynamicCs ...........cccceeeevviieeeeesiiieeee e 63
45.2. Improved Rotor Interaction Pattern..........cccocuveeiiiiiiien e 67
4.6. Transition from Saliency Map to Contour Segments..........cccceeeievieeecesiinennn. 72
4.7. Transition from Contour Segments to CONtOUIS..........coooiiieirieniiiiieeeeiiiieeeenns 73
CHAPTER 5. PROCESSING OF RESONANCE SIGNATURES..........ccoeviiieeenee 75
5.1. Resonance Detection in Plasma Sounding Data: Previous Work................... 75
5.2.  Fitting composite resonance MOdel ... 80
5.3. Detecting and Matching Plasmagram ReSONaNCeS..........ccccceeveviviveeeesiiivnennans 83

vii



53.1. RESONANCE DEIECHION ... .o e 83

5.3.2. Matching the Gyrofrequency ReSONaNCES .........ccccvveiieeeiiiie i 90
5.3.3. Matching the Plasma Frequency ReSONANCE ...........ccccvvveveeiiiiieeeesiinennenns 92
5.4.  DISCUSSION Of RESUILS ... 94
5.4.1. Errors in prediction of medium gradients...........ccoooveiiiieeniiie e 95
5.4.2. False decisions by the signature detector............cccccevieeeeeciiiiee e, 95
5.4.3. Key resonance signatures missing or obscured............ccccccceeeeeeeeecccnnnee, 96
5.5.  Unmatched ReSONANCE STUAY .......cccueiiiiiiiiiiiieeiie e 97
5.6. Removal of Resonance SIGNatUres ........cccveeeiiiiiieieiiiiie e ee s 97
5.7, CONCIUSION ...ttt e b e es 98
CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY .........cccueuv. 99
6.1.  Performance STUAY ..........oooiiiiiiiii e 99
6.1.1.  ANNA Performance on Synthesized Patterns...........cccccceevvvvvveeeviivnennn. 101
6.1.2.  ANNA Performance on Plasmagram Data..............ccccceevveiviivieeecsiinnnnnn. 107
6.2. Plasmagram Processing RESUILS.........c..oviiiiiiiiiiiiiiie e 107
CHAPTER 7. CONCLUSIONS AND OUTLOOK.......cciiitiiiiiieiiieeeniie e 110
REFERENCES ... ..ottt ettt ettt et e e b e e e e e e sbe e e sab bt e e nebe e e e nee 114

viii



TABLE OF FIGURES

Figure 2.1.  Earth’s magnetosphere and IMAGE orbit...........cccoooeeiiiiiii i, 7

Figure 2.2.  Echo detection concept in RPL.........coo e 9

Figure 2.3.  Plasmagram representation of the RPI echoes with traces and resonance
SIgNAtUreS as INAICALEA ........occi i a e e 10

Figure 2.4.  RPI mission planning scenario: individual RPI programs (left bottom)
are assembled into RPI Schedules (right bottom) to provide appropriate coverage
of diverse science goals on orbit, depending on the spacecraft location and time

(top) 15
Figure 3.1.  Marr’s paradigm of visual perception: elements of increasing perceptual
strength, BUilt DOTOM UP...cooo e 18
Figure 3.2.  Example of direct grouping of edgels into contours. (a) edgels produced
by detection, (b) edgel subsets forming CONtOUrS. ........cccceeviiiiiieie i, 22
Figure 3.3.  An example of the “microscopic” grouping technique considering all
possible line tracing decisions in 3x3 context window. From [Liow, 1991]. ........ 24
Figure 3.4.  Fitting templates to edgels and resolving conflicts. .........cccccocveeeiniinnnn. 26
Figure 3.5.  Linear Hough transform fitting straight lines to a pattern containing four
signal edgels (green) and one noise edgel (red).......ccccevi i 29
Figure 3.6.  Use of Gestalt principles of perception for grouping (adapted from
[Wersing et al., 2001]). ..ceeueeeeiieieiiie ettt 31

Figure 3.7.  The interaction pattern of the oriented cortex cells [Yen and Finkel,
1998] in the model of pre-attentive human vision. The post-synaptic cell in the
center of the pattern receives facilitating inputs from the pre-synaptic cells in the
shaded areas. Degree of facilitation depends on the distance between cells and

their MUtUal OFENTALION. ... e e 35
Figure 3.8.  Hopfield model of artificial NeUroN,...........cccevvviiiiiieie e 36
Figure 3.9.  Segment model for contour extraction by [Peterson, 1989] and [Derby,

1988]. 38
Figure 3.10. Edgel grouping with Denby-Peterson segment model, an example from

[Peterson, 1989] ... e e e e e re e e r e e e e 39
Figure 3.11. Rotor model network evolves, aligning rotors along the contour.......... 40
Figure 3.12. Linear trace model for rotor NN [Peterson, 1990]........ccccccveeviiiieeeeninnen 40
Figure 3.13. Circular model for rotor network by Baginyan et al., [1994]................. 41

Figure 3.14. Effects df parameter in the contour energy: (a) smooth line that does
not capture corners, (b) good capture of corners but high sensitivity to noise, (c)
compromise. From [Lai, 1994 ]. ...ttt et 43
Figure 4.1.  Plasmagram taken on Jun 29, 2001 03:13 UT containing two traces with
a oW SIgNAI-tO-NOISE FALIO. ...cccvvviiiec i 47
Figure 4.2.  Plasmagram taken on Jun 29, 2001 03:00 UT showing a trace of variable
signal-to-noise ratio across the freqQUENCIES. ... 48



Figure 4.3.  Plasmagram taken on Jul 9, 2003 18:24 UT during high radio emission
activity in the frequency band between 210 and 260 kHz (shown in detail in panel
(a)). The emissions cause multiple false positives of the echo detector (b)........... 49

Figure 4.4.  Hough transform applied to low (left) and high (right) range jitter
patterns 50

Figure 4.5.  Simulation of range jitter causing misalignment of the edgel interaction
pattern and lOW SAlIENCE. .........ooo e 51

Figure 4.6.  Extended Marr’s pyramid of perception for plasmagram processing.... 54

Figure 4.7.  Edgel labeling for an example plasmagram (a) taken on March 2, 2002,
04:46 UT. Direct edgel detection (b) produces a large number of false edgels even
with the thresholding of the amplitude gradient. (c) Application of the smoothing
3x3 median filter prior to edgel detection reduces the noise edgels but damages
thin traces (d). The chosen approach (e) uses the adaptive local thresholding to
detect echoes and then labels the leading edges (). ....ccccoeeeviiiiii i 57

Figure 4.8.  Echo detection by adaptive amplitude thresholding. (a) One frequency
scan with intervals taken by echoes, (b) amplitude histogram used to determine the
tNrESNOIA [EVEL. ... e e 59

Figure 4.9.  Example processing with AvTrend echo detection algorithm. Sliding
window of N=7 points is placed at the range bin shown in black. Window average
amplitude is calculated over 6 points and the threshold is set D units higher. The
range bin in this example is classified as echo because its amplitude exceeds the
threshold.60

Figure 4.10. Use of angular histogramming algorithm [Bagynyan et al, 1994] to
evaluate edgel orientation (example). (a) Angular histogram is built from elevation
angle of all trial straight lines going through the base edgel and all nearby edgels
within the circle of radius§. (b) The angle of highest occurrence in the histogram
is selected as the edgel OreNtALION. ..........oovuiiiiiiei e 61

Figure 4.11. Artificial neuron for rotor interaction. ...........cccocvveeeeiiiiiie e 62

Figure 4.12. Processing of a synthesized edgel pattern by a circular model of rotor
interaction: (a) edgel pattern, (b) initial rotor placement by angular histogramming,

(c) results of ANNA OptimiZation............coocveieiiiiiiiee e 63
Figure 4.13. Circular model for rotor network by Baginyan et al., [1994]................. 64
Figure 4.14. Rotor configuration corresponding to the strong false minimum of the

Baginyan rotor model €NErgy. ...t 65
Figure 4.15. Sigmoid function of the MFT neuron with region of optimal

performance as INAICALEA. ..........ccoiiiiiiiiiie e e 67

Figure 4.16. Close-range co-circular interaction of rotors in range jitter conditions
(simulated example). Due to the overestimated range of edgel j, contribution of
rotor V; to rotor M is t00 Small. ..........ccoocuiiiiiiii e 68

Figure 4.17. Saliency calculations for a weak contour in vicinity of a stronger contour
(simulated pattern). (a) Simulated image of two traces. (b) Edgel pattern. (c) Initial
rotor orientation. (d,e) Optimized rotor orientations and resulting trace segments
obtained with a conventional circular model. Weak contour rotors are attracted to
the stronger contour. (f,g) ANNA model processing with added dead zones in the
) (=T e Tel [0 g I o= L1 (=Y o PRSPPI 69



Figure 4.18. Placement of the dead zones of rotor interaction. The interaction pattern
is oriented co-axial with (a) post-synaptic rote{adnventional), or (b) pre-
synaptic rotor V. In the latter case, error in initial evaluation gfovientation will

be corrected during evolving of the neural network. ..o, 71
Figure 4.19. Evaluation of thig andf; angles for the connection smoothness term in
grouping score [Galkin et al., 2004]. .......coiiiiiriiiiiiiee e 74

Figure 5.1 Response of the cumulative median filter to synthesized signals with falling
(a) and rising (b) envelopes. The filter elevates the falling envelope that the
resonance signatures are expected to display and reduces the rising slope, thus
imMproving the SigNature CONIAST. .........uuuiie it 84

Figure 5.2 Response of the cumulative median filter to synthesized signals with falling
(a) and rising (b) envelopes, with the addition of 30% noise. The filter smoothes

the noise and enhances the contrast of the resonance signatures...............cccccveeenee. 85
Figure 5.3 Cumulative median filter applied to RPI data: (a) a frequency containing
resonance, (b) a frequency without resonance and a single echo. .......................... 86

Figure 5.4 Resonance detection in RPI plasmagrams. (a) Raw plasmagram, (b)
Processing with the cumulative median filter. (c) Summary amplitude function
(white bars), labeled frequencies containing resonances (gray bars) and detected

peaks (black bars). (d) Localized resonance signatures shown in magenta. .......... 87
Figure 5.5 Use of the differential histogramming technique to estimate the local
detection threshold for the resonance signature. ...........ccoccveeeeiiieee e 90

Figure 5.6 Choice of the actual plasmagram frequencies next to the trial frequency.
If the closest frequency is not tagged as containing a resonance, the other

frequency contributes to the fit quality with a reduced weight............ccccceevvvvienns 91
Figure 6.1.  Simulated pattern containing a single trace with gaps and noise......... 102
Figure 6.2.  Processing of the same pattern as in Figure 6.1 at smaller (a-c) and

larger (d-f) analySIS SCAIES. ........ueiiiiiiiie e 104

Figure 6.3.  Processing of the same pattern as in Figure 6.2(d) with a more
appropriate annealing regime (stop temperature increased to prevent premature

saturation due to a larger scale of analysis).......cccccccveeeiiiiieee i 105
Figure 6.4.  Sample pattern containing two closely spaced traces with some minor
0APS AN NOISE. ..ottt e e ettt e e e et e e e e st beee e s s sabeeeeesasneeeeeesnseeeaeann 106

Figure 6.5.  Processing of weak short contours in vicinity of a strong contour. ..... 106

Figure 6.6.  Example of processing stages for RPI plasmagram taken on March 01,
2002 00:02:58 UT. The raw plasmagram (a) is thresholded to obtain echoes (b),
which are then reduced to the edgels (c). The edgel orientations are obtained and
optimized to derive the saliency map (d) of the image. The saliency measures are
analyzed to obtain trace segments (e) that are then combined together to form
traces (f). 108

Figure 6.7.  Some of July 2001 plasmagrams selected by CORPRAL as containing 6
EFACES OF MO, ..uiiiiiiieie ettt et e e e e e e s e e sttt e e e e e e e e s en s bbb besaeeeaeeneeanans 109

Xi



CHAPTER 1. INTRODUCTION

With the growing detailed knowledge comes an increased sophistication of our
exploration techniques. We deploy scientific experiments of greater complexity and build
research instruments of higher information output, all in the name of gaining further
insight into the universe. Often, however, the information explosion we ignite turns into a
tedious, unfathomable data avalanche. In many applications, ranging from a multi-
terabyte astronomical sky survey to the ever-growing imagery archive produced by the
high energy particle accelerators, the incoming flow of scientific data would demand
humanly impossible effort to explore and comprehend if it were not for assistance of the

Intelligent Systems (IS).

Many information-rich scientific projects spawn the IS applications that establish an
automated clearinghouse for dispersed and disorganized data. The computer plays a
powerful and enabling role in those projects where the size of dataset precludes manual
processing. The IS applications that deal with images are perhaps the most sophisticated
ones because of the need to model the intricate process of visual information processing
in the brain. While a wide range of disciplines such as biology, physics, mathematics,
computer science, and psychology have offered a great variety of concepts to our
understanding of visual perception, a large gap still exists between the lower level of
vision as described by the neurobiology of the retina cells and brain cortex, and the upper
level of such brain functions as memory and learning. Lack of this understanding became

the stumbling point for a real-world IS project that was started in order to automatically
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classify and sort images from the Radio Plasma Imager (RPI) [Regtisdh 2000], a

radar instrument onboard NASA's IMAGE spacecraft [Burch, 2000]. The RPI makes
snapshots of plasma conditions in the magnetosphere of the Earth at a rate of ~600
images per day. Exploration of an early-vision model capable of detecting signatures in

the RPIimages is the topic of this thesis.

The early vision extracts salient cues from images without willful concentration of
attention on the image elements, and for that reason is often padledtentive Pre-
attentive vision effectively “pops up” contours of objects in the field of view. Existing
model descriptions of the pre-attentive vision are based on the concept of reductionism
that explains behavior of a system in terms of the simpler subsystems comprising it.
Known since the late 1970s as the Marr’s paradigm of vision [Marr and Nishihara, 1978],
this reductionist approach builds a pyramid of perception in a bottom-up fashion, where
each new level holds visual elements of higher perceptual strength and lower levels are
unaware of considerations happening at the higher levels. Advancement from level to
level in the Marr's pyramid is often referred to perceptual groupingwhich is
governed by Gestalt principles of perception [Rock and Palmer, 1990]. Though largely
simplified, the pyramid model is in a good agreement imithitro biophysical studies of
the eye retina and brain cortex cells responding to simple shape stimuli such as line
segments. Howeverin vivo studies have shown that visual system cells display
seemingly chaotic and highly irregular behavior [Hatltal, 1996]. It is the goal here to
investigate this process in a greater detail by placing the early-vision model in the
framework of neurodynamic organization, where collective interaction of neurons

optimizes segmentation of the contours.



1.1. Scope and Goals

The goal of this thesis is to contribute to the understanding of pre-attentive vision by
investigating an artificial neural network algorithm (ANNA) for contour segmentation.
ANNA is a feedback neural network with a sigmoid transfer function of the neurons and
network evolving procedure based on the mean field theory [Peterson and Anderson,
1987] that employs a Gestalt-compliant interaction pattern similar to the Yen and Finkel
[1998] model of the brain cortex. Although compliance with the Gestalt law of
perception is a target for many models of perceptual grouping, its implementations within
the neurodynamic framework to the real-world images are rare because of a high
computational demand. The ANNA model is explored by identifying its performance
issues on synthetic and actual RPI data and heuristically shaping its energy function and
evolving process for optimal performance. Ultimately, ANNA is the central component
of a Cognitive Online Rpi Plasmagram Rating Algorithm (CORPRAL) [Gatitiral,
2004b] for signature extraction from the RPI images. Ratings provided by the CORPRAL
are instrumental to efficient data exploration by quering the RPI mission database
currently holding nearly 1,000,000 images. Other important issues of building the Marr’s
pyramid layers of the CORPRAL that make our approach feasible are discussed. These
include principles of feature selection for perceptual grouping, as well as an independent
topic of detection and matching of the plasma resonances in RPI image data ¢Galkin
al., 2004a], which is done prior to the contour segmentation to simplify the task. The last
part of the thesis presents the overall CORPRAL performance results and outlines future

work.



1.2. Thesis Contributions

This thesis takes advantage of a cross-disciplinary approach to the difficult,
scientifically significant problem of feature extraction from the imagery data of highly
variable content and quality. Most parts of the developed pre-attentive vision model
discussed earlier were previously known from other studies in related areas. They were
brought together to create an innovative perceptual system that draws its strengths from
established concepts in psychology, biology, mathematics, remote sensing, plasma
physics, and computer science. The thesis research expands the classic Marr’s classic
vision paradigm by adding a previously-known concept, rotors, as a new perceptual layer
in the pyramid. In the rotor layer, the oriented edge elements (edgels) detected in the
image are subjected to a collective global-scale optimization to correct imperfections of
their orientation originally determined by a local-scale process. Letting oriented edgels
(rotors) change their orientation under collective influence of surrounding rotors is a
well-known concept that can be traced back to the magnetic spin systems in physics. The
principles of rotor interaction, however, remained rather simple over the years; enhancing
them with the modern understanding of cell interaction in the brain cortex is another

important contribution of the thesis.

The benefits and viability of the proposed techniques are shown using the operational
system for plasmagram analysis, CORPRAL, which applies the pre-attentive model to
the RPI plasmagrams. Special attention is paid to pre-processing of plasmagrams based
on the principles of signal detection and resonance interpretation. The thesis contributed

notably to the task of the automated matching of the plasma resonance signatures to their
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theoretical counterparts. A new cumulative-median filter was developed for enhancing

the contrast of resonance signatures, and a resonance detector was developed to register
and evaluate the signatures prior to matching them to the theoretical model. The
resonance matching algorithm is implemented in the flagship data visualization system

for RPI data, BinBrowser, to aid the process of plasmagram interpretation.

The final contribution of the thesis is the data exploration results obtained by the
CORPRAL system that works online with the RPI database holding over 800,000
plasmagram images. The subset of plasmagrams identified by CORPRAL as containing

traces is made available for remote queries from the BinBrowser workstations.

1.3. Plan

The first chapter discusses the motivation for development of intelligent systems that
help to organize and explore large datasets collected by scientific applications. It then
describes the essence of the thesis research and defines its scope, goals, and contributions
in relation to the concept of automated data exploration and the need for better

understanding how the early vision functions.

The second chapter gives the description of the Radio Plasma Imager and specifics

of its dataset that motivated this research.

Chapter 3 gives an overview of the existing contour extraction approaches based on
the Marr paradigm of vision. The review distinguishes between local and global

techniques and summarizes the main results of previous research that serves as the
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foundation for this work: the Gestalt-compliant interaction of directed edge elements and

feedback neural network optimizing the alignment of rotors.

In Chapter 4 the artificial neural network algorithm (ANNA) is introduced as a
feedback neural network with sigmoid transfer function and the mean field evolving
process that aligns rotors along the contours in the image. The ANNA uses Gestalt laws
of perception in the design of the rotor interaction pattern similar to many other models
of perceptual grouping. The modifications to the interaction pattern are then discussed
that are necessary to provide robustness of the alignment algorithm to the specifics of the
RPI image data. This\also works to avoid the local minima of the energy function during
the evolving of the network. The need for pre-processing of features is then discussed in
the context of the computational requirements imposed by the ANNA operations. The

analysis of ANNA performance is then made on synthetic and actual RPI images.

The fifth chapter introduces a related topic of the detection and matching of the
plasma resonance signatures in the RPI image data, an operation done prior to contour
segmentation to simplify the ANNA processing. The resonance processing algorithm
includes a signature detector and an automatching algorithm based on the existing

relations between several resonance frequencies.

Chapter 6 presents CORPRAL, a software tool for signature extraction in the RPI
images based on the ANNA model, including implementation, first results and

performance issues of the CORPRAL.

Chapter 7 summarizes the main results and discusses future research directions.



CHAPTER 2. RADIO PLASMA IMAGER DATASET

Our study was motivated and influenced by the need to build an intelligent system for
the automated exploration of imagery data collected by the Radio Plasma Imager (RPI)
designed to locally and remotely probe the plasma in the magnetosphere surrounding the
Earth. The chapter briefly describes the RPI instrument and highlights specifics of its
operations and data. Chapter 4 discusses in further detail the unique features of the RPI
dataset that affected design of the pre-attentive vision model for signature extraction in

the RPI images.

2.1. Radio Plasma Imager

The Radio Plasma Imager aboard the IMAGE spacecratft is a radar with the direction
finding capability, designed to probe the plasma of the Earth’s magnetosphere at near and

far ranges (Figure 2.1).

agnetosphere

Figure 2.1. Earth’s magnetosphere and IMAGE orbit
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The fundamental objective of RPI is to detect responses of surrounding plasma to the
transmitted radio signals and to infer characteristics of the magnetospheric plasma
environment from the detected signatures. RPI can be thought of as a point source of
radio waves that illuminates the space around it using short pulse and then detects echoes
arriving from various regions of ionization in the magnetosphere, plasmasphere and
ionosphere, as well as plasma irregularities of various scale sizes. For the radio signal to
reflect at a remote location and return to its origin, specific conditions have to be met.
Not only must the frequency of the signal match the local plasma frequency in the
reflection area, but also the plasma density gradients have to satisfy certain geometrical
criteria. It is important to recognize that RPI, in its active sounding modes, is the radar of
opportunity that “sees” targets only sporadically on any particular orbit. The need to
search for features in the RPI dataset has been the rationale for intensive mission

planning, data mining and signature characterization effort.

2.2. RPI Plasmagrams

To remotely sense conditions of the surrounding plasma, RPI employs a stepped
frequency radio sounding concept that has been successfully practiced in a variety of
applications, in particular the ionospheric sounder [Reini$8Bg. To search for the
reflected signals, the RPI probes a specified number of the sounding frequencies by
transmitting a pulse and sampling, for each frequency, the amplitude of receiver voltage

at a specified number of delay times after the pulse transmission (Figure 2.2).
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Figure 2.2. Echo detection concept in RPI

The echo travel time is usually converted to the so-called virtual range to the reflector
using the assumption that the signal travels at the speed of light. For brevity, the virtual
range is often referred to as “range” in this text. Measurements of the amplitude at each
of the sampled virtual ranges present the first, simplest layer of the RPI data roster.
Figure 2.3 shows an example plot of the amplitudes in the frame of sounding frequency
versus virtual range, a technique that has been in practice since the first experiments with

the swept frequency sounding of the ionosphere in the 1930s.



10

2002-Mar-02 04:22:58 UT

Upper Hybrid Frequency
Resonance

Interference
Lines \\

1 o o | 51
Rdatkarodn Plasma Frequency 3 -
S Resdnance _

Gyrofrequency o o
Harmonics : ol : . C

Virtual Range, Rg

Az, dB

60 100 300 500 1000
Frequency, kHz

17

Figure 2.3. Plasmagram representation of the RPI echoes with traces
and resonance signatures as indicated

Plots of RPI amplitudes in the frequency-range frame are qa#esthagramsThe
example plasmagram shown in Figure 2.4 is plotted using the BinBrowser visualization
tool [Galkin et al, 200]]. As can be seen in this particular plasmagram taken on March
20, 2002, 04:28 UT, the plasma responses to the RPI transmitter signal in two basic ways,
(a) reflecting the signal from a remote location back to its origin, and (b) sustaining short-

range plasma waves at characteristic frequencies, resonances.

2.2.1. Plasmagram Traces

Individual echoes, when viewed in the plasmagram representation, typically form

curves of various shapes and lengths, caleces Each individual plasmagram trace is
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X-monotonic, i.e., for each frequency only one range value exists. The traces are not y-

monotonic, though, and the same range value may appear twice (or more) in a trace.

Interpretation of the traces found in the RPI plasmagrams still presents a considerable
difficulty because of the experiment’'s novelty. Preliminary investigation showed that the

traces can be classified in at least three basic categories:

1. Wave polarizatiof

o ®
N X O

o

2. Wave propagation mechani8m

a. Direct

b. Field-aligned propagation (FAP)

3. Reflectof

a For RPI electromagnetic waves, the space plasma in the Earth’s magnetic field is an anisotropic medium
that causes splitting of the RPI signal into the left- and right-circular polarized waves traveling with
different phase and group velocities in the medium and yielding different traces on the plasmagram. The
left circular and right circular waves (with respect to the geomagnetic field) are referred to as ordinary
(0), and extraordinary (X) polarizations, whereas their combined mode involving mode transformations
is called Z-trace.

b Propagation of the electromagnetic waves in the magnetized plasma of the Earth has been studied
extensively to identify two major propagation mechanisms of special interest to RPI, (1) direct
(involving refraction) and (2) field aligned (following the curve of Earth’s magnetic field lines [Reinisch
et al, 2001]). The physical mechanism causing waves to deviate from the straight line is explained in
terms of guided propagation.

¢ The conditions for RPI signal to reflect and return to the spacecraft location may be satisfied in a variety
of plasma structures of global scale. Those are typically either abrupt gradients of plasma density
(plasmapause, magnetopause, cusp), or plasma of smoothly increasing density (plasmasphere,
ionosphere), where the local plasma frequency eventually matches the sounding frequency causing the
refractive index to become zero and wave to reflect.
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a. Plasmasphere

b. Plasmapause
c. lonosphere
d. Polar Cap area
e. Cusp

f. Magnetopause

Finding plasmagrams with traces and interpretation of the found traces constitute a
significant part of the RPI science data analysis. This process usually involves manual
screening of the plasmagrams and extraction of the traces, a tedious effort often requiring

hours to process one day of raw data.

2.2.2. Plasmagram Resonances

A radio transmitter immersed in the plasma is capable of stimulating short-range
plasma-wave echoes and plasma emissions when its sounding frequency matches one of
the characteristic frequencies of the plasma, often called resonance frequencies, or simply
resonances. Typical resonance signatures have been observed by a number of space
missions carrying a topside ionosonde or a relaxation sounder (see M@} for a
representative review). Detection of stimulated resonances and wave cutoffs in the radio
sounding data provides a measurement of local plasma density and magnetic field
intensity that has demonstrated an accuracy and diagnostic potential superior to what

conventional magnetometers and density probes are able to achieve.

The resonance signatures appear in plasmagrams as the vertical line segments

extending upward from zero virtual range (see Figure 2.3), each corresponding to a
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particular resonant response of the local plasma to the transmitter excitation. Five major
types of resonances in the RPI plasmagrams have been identified, all pertaining to

oscillations of the plasma electrons, observed at the following frequencies:

a) electron cyclotron frequengy, and its harmonicsifts (N=1, 2, ...)
b) electron plasma frequenty,
c) upper-hybrid frequencn,
d) Qn resonancds, (also known as Bernstein-morEsonances)
e) Dn resonancdsg,
A number of relations exist between the plasma resonance frequencies [Stix, 1992].
The upper-hybrid frequenc¥i, for example, is given in terms of the plasma and gyro

frequencies:

fn =y 2+ 2 (2.1)

The Qn resonances can be related to the plasma and gyro frequencies by an approximate

expression [Warren and Hagg, 1968]:

0.46f2
fo = fc{n+ - fpz } (2.2)

ce

which is a good approximation whegi/f. is near an integer value. Bensral.[2001]
provided curves ford/fcc based on electrostatic dispersion equation solutions for zero-
group velocity plasma waves perpendicular to the Earth’s magnetic field. Finally, the
sequence of Dn resonances is described by the following expressions [Osherovich and

Benson, 1991]:
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fo =0.95[f,f /0 n=1,2, ..
fon =y f2,+ £2 (2.3)
fon =4/ fon = T
Equations (2.1-2.3) can be used to build a composite model of the resonance
signatures driven only by the electron gyrofrequefigyand the electron plasma
frequencyfye In addition to the known resonance frequencies, plasmagram scalers

commonly utilize, for the resonance interpretation, the so-called X cutoff and Z cutoff

frequencies, corresponding to the left cusp end points of the Trace 5 and 6 shown in

Figure 2.4:
fce fpze
fX:7 1+ 1+4f2 (2.4)
f,="1, - f, (2.5)

2.3. RPI Data Avalanche

In addition to the remote active sensing mode discussed in Section 2.2, where RPI
receives reflections of its transmitter signal from remote regular and irregular plasma
structures, and stimulates and observes the local plasma resonances, RPI also monitors
the natural electromagnetic noise environment and participates in the joint campaigns
with other radio spectrum instruments in space and on the ground as both transmitter and
receiver. Furthermore, even within the same observation mode, RPI cannot keep its
measurement program parameters constant as it orbits the Earth. Because of the highly

elliptical orbit of the IMAGE spacecraft, RPI observes a dramatic range of the plasma



15

and magnetic field conditions and needs to accommodate this variability by appropriate

selection of its plasmagram frequency and range intervals.

Figure 2.4 illustrates the elaborate mission planning concept for RPI operations,

originally described by Reinisat al.,[200Q.
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Figure 2.4. RPI mission planning scenario: individual RPI programs (left
bottom) are assembled into RPI Schedules (right bottom) to
provide appropriate coverage of diverse science goals on orbit,
depending on the spacecraft location and time (top)

The spacecraft orbit is sectioned into six regions whose boundaries are calculated

individually for each 14.5 hour orbit, depending on the location of the intersection points
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of the orbit with the predicted location of the Earth’s plasmafaMgighin each orbit
region a particular repetitive sequence of measurements is run, catleddale Figure
2.4 includes the screen captures from the RPI mission planningetiR1 Individual
RPI programs are designed with the Program Editor, which are then assembled into
schedules using the Schedule Editor, and then finally assigned to the appropriate orbit

regions using the Start Time Editor.

As individual measurements may or may not contain useful information, the RPI data
requires a substantial exploration and classification effort. Unfortunately, because of the
irregular content and format of the RPI data stream, it is impossible to present its images
in a constant frame so that many frames can be assembled in movies for a fast visual
analysis. Data analysts have to browse through the RPI archive image by image to inspect
plasmagrams for useful information. In July 2002, the measurement count reached
1,000,000 records. With another three years of anticipated mission life, the total number
of data records is expected to reach 3,000,000, with projected total of 2,000,000
plasmagrams. With average 5 sec response time of the database to the retrieval request, it
will take about 2,700 man-hours to simply glance at the data. This condition can be

classified as the “data avalanche”.

4 Plasmapause is the outer boundary of the Earth’s plasmasphere. Plasmasphere comprises the higher
density plasma controlled by the Earth’s magnetic field that co-rotates with the Earth.
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CHAPTER 3. PREVIOUS WORK

In this chapter we put the task of finding traces in the RPI plasmagrams in

prospective of existing approaches to contour detection in images.

3.1. Marr's Paradigm of Vision

We constrict this review to the contour extraction techniques that comply with Marr’s
paradigm of computer vision [Marr, 1976], where the elements of increasing perceptual
strength are built successively bottom-up using such operations as selecting and
grouping. The Marr's paradigm has been widely adopted for its ability to break the
complex task of visual analysis into smaller, independent and manageable components
(layers). There is ample evidence of modularity in the mammal vision system supporting
this approach. On the other hand, independence of the layers in the Marr's pyramid
constitutes a fundamental flaw: lower stages of analysis are unaware of the model
considerations on the higher levels, and errors flow irreversibly from lower stages of
analysis upward to the next. Nonetheless, the Marr’s paradigm is commonly accepted as
the founding principle of the pre-attentive vision, and its extensions are sought along

various avenues.

Figure 3.1 shows the Marr's pyramid of perception that is used here to review

existing work on contour extraction. The pyramid consists of the following layers:
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Contours

Saliency Map
Criented Edgels
Edgels

Raw Image

/

Figure 3.1. Marr's paradigm of visual perception: elements of
increasing perceptual strength, built bottom up.

Raw Image Raw image is an (N x M) matrix of pixels, each pixel representing

the image intensity.

Edgels Edgel is an “edge element”, a term introduced in visual scene analysis
where objects are analyzed by first locating their boundaries (edges). The edgel
corresponds to a sharp gradient in the image intensity typical of a boundary. Individual

edgels form the contour.

Oriented EdgelsEvaluation of local orientation of the contour at the edgel

location adds an additional perceptual value to edgels. The edgel orientation is
commonly obtained by seeking gradients of image intensity within a local context

window around the edgel.

Saliency mapLocal context techniques do not yield reliable edgel orientations in
various situations requiring a larger context area to correctly identify the trace. Long-
range, collective analysis of edgel data results in evaluation of perceptually stronger

quantity, saliency. The saliency measure reflects how likely an edgel is part of a
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contour. The saliency measure calculated for all edgels constitute the saliency map of

the image.

Contours The saliency map is analyzed to find subsets of edgels belonging to the
same contour. Found subsets may correspond to the contour segments that need to be
completed into the full contours, but this operation is outside the scope of the pre-

attentive vision.

A wide range of disciplines such as biology, physics, mathematics, computer science,
and psychology have offered a great variety of concepts that contribute to the
understanding how perception progresses from one level to the next in the Marr's

pyramid. The following section reviews the major results of these studies.

3.2. Transition from Raw Image to Edgels

In the seminal work on the edge detection, Marr and Hildreth [1980] laid the
mathematical foundation that tied together several physiological mechanisms previously
discovered in experiments with the retinal cells responding to a point light stimulus. It
appears that the retina is not simply a photoreceptor matrix, but a rather complicated
parallel bio-processor of the image. It partitions the image at multiple scales (channels)
using cells of various receptive field sizes. Within each channel, a smoothing filter is
applied, second derivative of the image intensity is taken, the short segments across
which the second derivative changes its sign (zero crossings) are detected, and the
magnitude of the change gradient is evaluated. Then the zero-crossing segments found in

each scale channel are combined into a map describing all gradients of the image
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intensity. The map is a symbolic early visual code presenting the original raw image to

the higher levels of the perception.

The merit of biophysical plausibility goes to the echo detection computational

techniques that employ, similar to the retina,

» a differentiation operator sensitive to the sharp gradients of the image

intensity corresponding to an object boundary or a line,

» a smoothing filter providing protection of the differentiation operator from the

false positives due to noise, and

e a multi-scale analysis ensuring that gradients of various scales are localized.

A suite of differentiation operators and filters has been devised for detection of edges
and ridges in images [Ziou and Tabbob@98]. The fundamental dilemma is to find the
right balance between noise reduction and inevitable loss of information due to the
damage that smoothing imposes on the fine structures in an image. This trade-off
problem has motivated development of a class of detection algorithms that manipulate
the analysis scale to better balance the tasks of noise protection and edge detailing. This
class includes the classic Canny's “feature synthesis” detector [Canny, 1986] that
implements the fine-to-coarse scale combination strategy, “edge focusing” filter by
Bergholm [1987] that applies the coarse-to-fine scale processing, and a later “local scale
control” detector by Elder and Zucker [1996] that selects the most appropriate scale for

each edgel.
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Incomplete presentation of the raw image by the edge detector to higher stages of the
processing is a serious source of recognition errors. Securing completeness of the
representation code is a non-trivial task, considering the need to balance the completeness
requirement with compactness, robustness and precision of the obtained code [Elder,
1999]. Although many multi-scale representations can be made complete or near-
complete (e.g., the zero-crossing operator at multiple scales used by Marr and Hildreth is
complete), they are definitely not compact. Wavelets-based codes [Mallat, 1989] secure
mathematical completeness of the representation but infer little understanding of the
explicit image structure and therefore offer just another way to compress the image. The
variable scale method where each edgel is represented not by multiple scales, but rather
by a uniquely selected scale [Elder and Zucker, 1996, Lindenberg, 1996] comes very
close to fulfilling the list of requirements, but the completeness of the output code is
achieved by loading the edgel with additional information (such as blur scale and
asymptotic intensities) that are yet to be included in the models at the higher layers of the
pre-attentive vision pyramid. These models commonly operate on the multiple scales
independently and in order to select a feature across the scales implement a combination
of “winner take all’ (WTA) and “inhibition of return” strategies [Koch and Ullman,

1985], discussed in greater detail in Section 3.3.2.5 below.

3.3. Transition from Edgels to Contours

After the edgels are detected, a solution to the task of combining them into contours

can be sought immediately, without going through the intermediate layers of the Marr’s
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pyramid shown in Figure 3.1. Figure 3.2 presents a realistic example illustrating several

facets of the task.

() (b)

Figure 3.2. Example of direct grouping of edgels into contours. (a)
edgels produced by detection, (b) edgel subsets forming
contours.

The edgels rarely line up in distinct, continuous sequences. In most real-world
applications, the set of detected edgels is prone to various degrees of false positive edgels
(noise), false negative edgels (gaps), and localization errors (jitter). However, a simple
concept of seeking neighbors in vicinity of each edgel can readily make a working
algorithm for edgel grouping. Early edgel grouping algorithms worked quite efficiently in

a number of applications where problems of noise, gaps and jitter were not severe.

3.3.1. Local grouping techniques

Early edgel grouping methods worked in two steps, seeding and tracing. The seeding
algorithm sought an edgel or a group of edgels that could be used as the start of a
contour, and the tracing attempted to find the rest of the edgels constituting the contour

by testing edgels in the vicinity. Grouping algorithms based on this simple principle are
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found in the literature as far back as the early 1960s (e.g., [Galkin, 1962]). These

algorithms employed a rudimentary logic that allowed them to bridge narrow gaps in the

contour and avoid false edgels that did not lie along the contour line.

Rosenfeldet al.,[1976] pioneered an approach that not only made the early methods
more robust against noise and gaps, but in fact established a new field of the research in
perceptual grouping. It started with the idea to analyze the close vicinity of edgels before
linking them, trying to identify and reverse false positive and false negative decisions
(i.e., noise and gaps). Because the authors used the term “labeling” for the operation of
edge detection, the revising procedure was named ‘“relabeling”. False negative pixels
were considered for relabeling via a “relaxation” procedure that simply weakened the
labeling criterion if the trial pixel fitted well with the neighboring edgels (for more
details, refer to Hancock and Kittler [1990]). Similarly, the false positive edgels were
removed if they were not supported by either strong or weak edgels. Finally, an important
decision was made to make the relaxation procedure iterative and run it until no further
relabeling changes were observed. The iterative nature of the relaxation algorithm had an
intriguing impact on its further development. As one individual application of the
algorithm affects only a few immediate neighboring context windows, the relaxation
labeling can be performed in the parallel fashion and can be therefore thought as
dynamic, parallel evolving of a network of locally interacting operators. This observation
linked the simple heuristic edgel relaxation concept to mechanisms of the pre-attentive
vision and resulted in an intensive study of statistical and neural aspectsetftadon

labeling networkgKittler and Illingworth,1985 Pelillo and Fanelil997. Eventually the
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relaxation labeling network concept was recasted into the framework of evolutionary
autonomic agents [Litet al., 1997 and took its place among other combinatorial

optimization methods discussed later in Section 3.3.2.

The iterative relaxation procedure analyzes the context window around the trial pixel
many times. We call a local grouping techniqueroscopicif its context window is
small and the relabeling outcome or edgel linking decisions are pre-computed following
certain design rules (cellular automata) and are often stored in a lookup table for better
speed. A popular example of such microscopic technique is so-called extended border
tracing by Liow 1991 where all configurations of the labeled pixels in 3x3 context
window were reduced to the set of 12 situations, each determining the next step of the

tracer (see Figure 3.3).
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Figure 3.3. An example of the “microscopic” grouping technique
considering all possible line tracing decisions in 3x3 context
window. From [Liow, 1991].
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The fundamental problem with the microscopic local grouping techniques is insufficient
protection against noise, gaps and jitter due to inherent “locality” problem (see, for
example, analysis by Nelsori994) that is directly related to their inability to abstract

from precise edgel locations within the small context window. The locality problem
manifests itself as failure of the algorithm to universally link together longer line
segments and at the same time be robust against the noise and edgel jitter. The process of
enlarging the scale of collective analysis of edgels constituting the lines leads to

development of locaimacroscopigrouping techniques.

Simple enlargement of the context window so that wider gaps can be bridged by the
grouping algorithm causes aggravation of the locality problem. A popular class of
techniques strengthens the line smoothness requirement by constraining the search of
edgels through the gaps to the sectors whose location is predicted by extrapolation of an
already found line segment. The predicting filter can be thought of as a variant of the
well-known Kalman filter used to predict the next state of systems in time. To use the
predicting filter for edgel grouping, a line segment needs to be found first to setup the
filter (equivalent to the system history in Kalman filtering). To find the seeding segment
in the edgel data, certain assumptions have to be used on its quality in terms of noise,

gaps, and jitter, which is a drawback of the algorithm.

Numerous implementations of the predicting filter grouping technique can be found
in the literature since 1960s (for a review of the early work on line tracing in high energy
physics refer to [Strandl973, a good example of a predicting filter for ionogram

autoscaling is given by Fox and Blundd989). With time, these techniques were
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improved for better noise robustness during both seeding and tracing phases (e.g., an
optimizing technique by Nelsor1994). However, the predicting filter remains prone to

locality problems because each grouping decision involves only a single edgel.

Techniques that manipulate with longer line primitives instead of individual edgels or
small context windows may have better robustness to noise and jitter. In one approach by
the author [Galkin1997, a set of predetermined linear templates is applied to each edgel
to test if there are neighboring edgels that fit together within one template. Because two
or more templates can claim the same edgel, a recursive conflict resolution algorithm is

run to determine one-to-one assignment of edgels to lines (Figure 3.4).

Template width

Conflicting
solution

Figure 3.4. Fitting templates to edgels and resolving conflicts.

Although fairly successful in the case of smooth traces, the algorithm still appeared to be

sensitive to the jitter observed during disturbed plasma conditions, and its gap bridging
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characteristics were rather modest. Although widening of the template could improve
robustness to the jitter, it also creates excessive conflict rate and deteriorates protection

against noise.

A generic bottom-up clusterization with a distance metric for the agglomeration
criterion will not produce elongated clusters for it is supporting the proximity principle
instead of the continuity (see Figure 3.1). Murtagh and Raft&384 were able to
generalize the distance metric to include a constraining parameter that scaled down the
criterion across the short dimension of the clusters. The constrained clusterization is able
to group edgels in long and smooth lines, but use of the distance metric makes it overly

sensitive to noise and jitter.

To extend the context area of grouping analysis, it became necessary to analyze all
edgels in the context neighborhood collectively. Collective analysis naturally led to a
suite of algorithms featuring synaptic interactions that weigh contributions from
individual edgels. The weights were determined based on mutual placement of edgels and
other characteristics. The key principle of the weighted interaction is to facilitate

contributions from the edgels belonging to the same contour and to suppress all others.

3.3.2. Global grouping techniques

We use the term "global” to describe the next class of edgel grouping techniques to
highlight the difference to the local techniques that manipulate with individual edgels
separately. In contrast, the global grouping method involves collective analysis of many

edgels to make grouping decisions. Global methods employ a model, though simple at
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times, that describes the class of lines to look for and then extracts the lines by bringing

the model into optimal agreement with the curvilinear features in the image.

The Hough transform [Hough, 1962], together with its many derivatives and
generalizations, has been known in the literature as the rigid contour approach because it
makes direct assumptions on the geometric shape of the sought contours and exhaustively
fits the contour model to the image, looking for the best fit(s). Although it is very rare
that contours have perfect geometric shape, the rigid processing is still commonly used to
find segments for further grouping.

3.3.2.1. Rigid Contours

The Hough transform is a classic example of the global model fitting technique for
searching rigid contours in edgel patterns. In its classic form, the Hough transform
attempts to fit a rigid model to all possible subsets of given points, thus building a
histogram of estimated model parameters. Figure 3.5 illustrates this idea with an example
of the linear Hough transform applied to a point pattern containing four signal points and
one noise point. The four signal points on Figure 3.5 are consistent with the linear model
and therefore all parameters estimated from the six signal pairs contribute to the same bin
of the histogram. The pairs with the noise point produce four different parameter sets.
After the exhaustive fitting is done, the histogram can be searched for the local maxima,
corresponding to the fitting solutions. The solutions are optimal in terms of detection

error.
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Figure 3.5. Linear Hough transform fitting straight lines to a pattern
containing four signal edgels (green) and one noise edgel
(red)

The advantages of Hough transform include robustness of the fitting against noise
and gaps without any assumptions on the number or location of the curves in the image.
The classic Hough transform (CHT) is not particularly “intelligent”. Drawing analogy
with the chess game strategies, it corresponds to the algorithm that takes the time to
generate all possible moves on the board. For this simple reason, the CHT becomes
computationally inefficient when the number of model parameters is greater than 2.
Because of that restriction, the models that work well with CHT are very simple, and
corresponding solutions lack locality. The lines restored from the found solutions span
the whole image, and another step is required to locate the actual edgels in the image that
belong to the solution and thus identify the start and end points of the line. For this

reason, the HT fails to process busy images with short segments.
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A number of ideas were suggested to improve CHT computation time. One popular
class of enhanced HT is called Probabilistic Hough Transform (PHT) (a good review of
PHT can be found in [Kalviainest al, 1995]), where instead of the exhaustive test of all
edgel combinations, a repetitive, random samplighe distribution is organized, and
when a distinct maximum in the histogram appears, the corresponding line segment is
immediately identified and the edgels constituting the segment are removed from the
edgel pattern, thus conforming to another principle of human vision, inhibition of return
[Posner and Cohen, 1984, kti al, 1999]. The Random Hough Transform (RHT) [2tu

al., 1990] is a version of PHT that samples_the edgel distribitsel A notable version

of HT, called the Importance Sampling Hough transform, ISHT, was suggested by Walsh
and Raftery [2001], where the model parameter space is repetitively sampled to verify for
a randomly selected subset of model lines the corresponding quality-of-fit (called
“importance” by the authors). The histogram of importances is thus obtained and
searched for the peak corresponding to the best solution. As in all PHTSs, the solution is
then identified in the edgel pattern and the corresponding edgels are deleted from the
image. The importance sampling operation is repeated in a loop until a stop condition is
met. The ISHT is reported to produce smaller errors in the resulting model fit comparing
to other PHTs, because it samples the parameter distribution instead of the edgel

distribution and therefore is not susceptible to the errors in the edgel localization.

The key problem of Hough Transform method remains unchanged in its improved

versions: it does not have a means of adjusting itself to deviations from the rigid model



31

that it was based on. Another class of techniques exists that embgfoymablemodels
that conform themselves to the image linear features with greater flexibility.
3.3.2.2. Deformable Contours

In contrast to the rigid approach, interaction of the edgels in deformable models is
governed not by a particular contour model, but rather by a set of generic perceptual
restrictions. These restrictions are known in the literature since the 1930s as the Gestalt
principles of perception [Rock and Palmer, 1990, and the references therein]. Continuity
and proximity are two principles frequently mentioned in the literature; Figure 3.6,
adopted from [Wersingt al.,2001], is a good illustration of two typical grouping tasks

performed under the guidance of proximity and continuity constraints.
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Figure 3.6. Use of Gestalt principles of perception for grouping
(adapted from [Wersing et al., 2001]).
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The Gestalt continuity interaction in the lower panel of Figure 3.6 uses an additional
characteristic of the edgel, its orientation. We shall briefly discuss the process of inferring
edgel orientation for the purpose of the continuity interaction.

3.3.2.3.  Transition from Edgels to Oriented Edgels

Orientation of the contour at the edgel location is relatively easy to determine with a
local context filter. Remarkably, such filter exists in the mammal visual system beyond
the retina, in a receptive field of cells in the brain called “primary visual cortex”, or striate
cortex, in agreement with Marr’s concept of separating the perception process in the
pyramid layers. Individual cells of the striate cortex are sensitive to segments of
particular orientation and therefore can be thought of as “bar detectors”. Among models
of the cortical cells, the Gabor function is considered the closest equivalent [MacLennan,
1991]. Local estimates of the edgel orientation can also be obtained by other,
computationally lighter filters such as Sobel x and y operators [Gonzalez and Wintz,
1987].

3.3.2.4. Transition from Oriented Edgels to Saliency maps
First introduced by Sha’ashua and Ullman [1988], the concepts of saliency measure,
saliency map, and saliency network attracted considerable attention in the field. The
saliency measure is a score calculated for any contour in the given image using principles

based on the Gestalt laws of perception:

Continuity:

» the score is higher for longer curves,

» the score is penalized for gaps
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Constancy of curvatur@(agnanz:

» the score is penalized for changes of curvature

Proximity:

 individual scores from pixels along the curve are added, so that contributions
from distant pixels decay with accumulating gaps and curvature changes

along the curve.

Effectively, the saliency measure gives a higher score to the long, continuous and
smooth lines over the short, discontinuous and wiggly lines. It is a stronger perceptual
entity inferred from previously used local measures of the edgel perceptual strength, such
as position, gradient orientation, etc. Using the saliency measure, Sha’ashua and Ullman
defined a saliency map of an image as another image where each pixel's intensity is
proportional to the most salient curve emanating from that pixel. Once the saliency map
is available, it is possible to find, for example, the most salient curve in the image that
corresponds to the element of the map with the highest saliency value. The most
intelligent part of the proposed approach is shéency networka tool to efficiently
calculate saliency maps for images. The saliency network is a dynamic system consisting
of locally interacting elements (edgels). Similar to the local relaxation labeling process
described previously in this chapter, the saliency network optimizes its state iteratively by
a relaxation procedure that is capable of gradually building the contours that conform to a
family of “extensible” shapes (such as the circle). The concept of iterative optimization is

very important for our approach described in Chapter 4.
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Guy and Medioni [1996] reviewed a number of saliency measures, algorithms for
their evaluation, and saliency map analysis techniques that were developed since the
pioneer work by Sha’ashua and Ullman in 1988. They also introduced their own,
iteration-less approach to calculation of the saliency maps, where the saliency score is

calculated once as a weighted sum of all contributions from the neighboring edgels.

Major contribution to the perceptual saliency approach came from the psychophysical
research of pre-attentive vision. Yen and Finkel [1998] built a model of the striate cortex
that encompassed many of the findings in this research. Their model is based on
interaction between oriented edgels represented by the cortical cells. Discovery and
analysis of such interactions presents another strong argument in favor of modularity of
the vision captured by the Marr's paradigm. According to the model of Yen and Finkel,
each cortical cell receives a collective facilitation from a network of other cells in its
vicinity. The degree of facilitation is determined individually for each pair of interacting
cells using the argument of Gestalt continuity. Figure 3.7 shows the typical interaction
pattern for the post-synaptic cell (in the center of the pattern) receiving inputs from the

pre-synaptic cells in the shaded areas.

The co-axial areas of the patterns implement the co-circularity constraint that
frequently appears in other models for perceptual grouping [Parent and Zucker, 1989,
Guy and Medoni, 19965alkin et al.,1996]. The co-circularity constraint is in agreement
with the Pragnan@estalt principle of curvature constancy. Biophysical studies show that
co-circularity is enforced only in the long-range co-axial pattern, whereas the trans-axial

pattern features simpler requirement of parallelism.
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Dead Zone

Transaxial
Pattern

Co-axial pattern
(co-circularity)

Co-axial pattern
(co-circularity)

Dead Zone

Figure 3.7. The interaction pattern of the oriented cortex cells [Yen and
Finkel, 1998] in the model of pre-attentive human vision.
The post-synaptic cell in the center of the pattern receives
facilitating inputs from the pre-synaptic cells in the shaded
areas. Degree of facilitation depends on the distance
between cells and their mutual orientation.

The saliency measure is typically based on the local perceptual strengths of the edgels
such as their orientation evaluated with the help of a local-context steerable filter. Alter
and Basri [1998] demonstrated high sensitivity of the saliency evaluation to discretization
effects, which makes this approach highly susceptible to the edgel jitter that causes
incorrect estimates of the local orientation. Indeed, errors in evaluation of the post-
synaptic edgel orientation (Figure 3.8) cause misalignment of the whole long-range
interaction pattern. These considerations warrant attention to those techniques in which
the edgel orientation is an integral part of the global combinatorial optimization scheme,

so that a greater robustness to the discretization problems can be achieved. The task of
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perceptual grouping was approached in terms of an evolving dynamic system, where

constituting parts interact under certain restrictions, an artificial neural network (ANN).

Dynamic interaction of the neurons in the neural network is similar to the iterative
relaxation optimization in the saliency networks. However, the ANN models are better
studied and have a good biological counterpart, the brain. Each neuron in the network has
connections to many others contributing their outputs for the neuron’s analysis (Figure

3.8).

— Qutput

Inputs from other neurons

Figure 3.8. Hopfield model of artificial neuron,

The artificial neuron is a simple element that constantly evaluates the weighted sum

of inputsl; from other neurons to decide what output it shall assume [Hopfield, 1982]:
N
X=>Wl,, (3.6)
j=1

whereW are the synaptic weights that scale ingutseom other neurons to produce the

summary output. This feature of the ANN is in a very good agreement with the concept
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of establishing a cumulative context in support of the grouping decisions. The synaptic
weights capture the restrictions under which the edgels interact (in our case, the Gestalt
principles). The system of neurons starts interacting until they reach a stable state. A
major contribution to understanding of the dynamic processes in ANNs is due to
Hopfield who described the evolving process in terms of an energy function that always
decreases. The network design process can be then thought of as “energy engineering”,
where the energy function is written down so that it becomes minimal for the desired
outcome of the optimization. The energy function is then used to derive the rules

governing the evolving of the neural network.

The ANN model shown in Figure 3.8 employs an additional mechanism in the
evolving rules for the neurons that allows the network to avoid local minima of the
energy function on its way to the global minimum. Using a statistical treatment of neuron
states known as the “mean field theory”, or MFT [Peterson and Anderson, 1987], it
became possible to induce regulated amounts of thermal noise into the evolving rule so
that it escapes the local minima. In the Hopfield network the neuron o@pus,

obtained by processing the weighted sum of inputgith a sigmoid function:

3 X
o= tan){?j , (3.7)

whereT is the noise temperature. Larger temperatures correspond to larger amount of
noise, and the evolving procedures benefit from various rules of the simulated annealing,
where the temperature decreases as the network approaches its global minimum of the

energy function.
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One of the first energy-minimization techniques to be applied to the contour
extraction problems was the segment model introduced independently by Peterson [1989]
and Denby [1988]. The segment model is based on a “spin” network where neurons
accept only a discrete set of states. In this segment model, the spin \srid®tes
whether two edgelsandj are connected by a contour segment of lengtfihe energy

function describing this simple idea is (see Figure 3.9):

cos" 4.
E — _iz 5jk ijl
2 ijkl rij rjl

+%{Z S80S, } (38

Figure 3.9. Segment model for contour extraction by [Peterson, 1989]
and [Derby, 1988].

The first term of the energy function imposes continuity and smoothness constraints on
the way connected segments are combined into lines. It favors adjacent segmedts

s that are short (smalfl; andr;) and aligned (small anglé, betweenr; andr;). The
second term punishes bifurcated lines. Figure 3.10 shows the results of stringing by
Peterson’s segment model for a family of circular traces with no noise, whgeg N

denotes the number of neural network iterations.
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Nsweep=10

b

Figure 3.10.Edgel grouping with Denby-Peterson segment model, an
example from [Peterson, 1989]

This segment model could not produce a reliably converging network configuration
because of the cumbersome formulation of its energy. Another approach was suggested
by Peterson [1990], where a “rotor model” was introduced as shown in Figure 3.11. In
this approach, the network has control over the length and orientation of rotors placed on
top of each edgel. The energy function of Petersons’ rotor model is minimal when rotors
are aligned with a trace line (see Figure 3.12):

E= —Zimvivj (cosa +kcosp) (3.9)

i) Mjj
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Figure 3.11.Rotor model network evolves, aligning rotors along the
contour.

where p, is distance between pointsandj, a is angle between rotokg andV; , B is

angle between roto¥; and the line connecting two points, amdl k are algorithm

constants.

Figure 3.12. Linear trace model for rotor NN [Peterson, 1990]

The first term of the equation 3.9 forces the rotors to turn parallel to each other and the
second term aligns them along the trace segment. The energy function favors the rotors
pointing in the same direction as the straight line between them, and therefore has a

tendency to favor straight lines. Its efficiency degrades when traces have significant
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curvature. Peterson’s model was successfully generalized to circular traces by Baginyan
et al, [1994 (Figure 3.13 and Eg. (3.10)):

Figure 3.13.Circular model for rotor network by Baginyan et al.,
[1994]

1
E=-)> -—-VV, cos

(3.10)
i#] Mij

curve.

Hereq; is angle between rotok4 andV;, whereV; is obtained by flipping/; around
the chordC;. The circular model of rotor interaction turns rotors tangential to the trace

The concept of energy minimization provides a better foundation to the deformable

contour approach. The deformable contour can now be thought of as a dynamic system
described by its energy function with three terms:

E = Eint + Emg + Eext

(3.11)
where internal enerdli, imposes smoothness and continuity constraints on the contour,

image energ¥mg attracts the contour to the edgels, and external elgggyoves and
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stretches/shrinks the contour. This dynamic system seeks optimal balance between the

three terms.

A great variety of energy functions have been engineered for the purpose of contour
extraction, appearing in the literature under such names as “snake”, “elastic arm”, and
“active contour”. These algorithms can be though of as dynamic optimization systems
seeking a balance between fit of the contours to the image features while preserving their
smoothness and continuity. In the absence of external force, the contour balances the
force that pulls it to the edgels and the elastic force that enforces local smoothness of the
contour and global conformation to the contour model, if it is available. The balance can

be biased to either side by using regularization coefficients & & (Lai, [L994):
E, = 2 AEn (M) + (1= A)Epg(v) (3.12)
i=1

Here the contour is a set of edgelg,{i = 1.n. Figure 3.14 illustrates how choice »f
changes the shape of the contour, where higher valdesesilts in a smooth line that

cannot capture sharp corners, and lokenake the line follow the sharp turns but is too

sensitive to noise.

The contour without external force that can change its location, orientation or length
needs to start with a good initial configuration to optimize it in accordance to the energy
formulation. The initial configuration can be obtained by some other technique, including
manual specification of the seed edgels. The common automated solution to the task of

finding the number of lines in the image and initialize the “snakes” is to use rigid
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contours extracted via the Hough transform and then evolve the deformable contour

around each of them.

(a) A=0.38 (by A=10.2 () minimax

Figure 3.14.Effects ofd parameter in the contour energy: (snooth
line that does not capture corners, (b) good capture of
corners but high sensitivity to noise, (c) compromise.
From [Lai, 1994].

A deformable contour that does not contain the internal energy term but allows more
freedom in terms of the number of lines and their expected shape was suggested by
Ohlsson 1993 to solve the task of groupingedgels irM lines:

E=>Y'S.M, +Ai(isa —1j (3.13)

i=1 a=1 i=1 \ a=1

Here theS;, is the binary decision term which is 1 if edgesl assigned to lina, and 0
otherwise. The first term of ener@yin equation 3.13 specifies the image force acting on
the contour by calculating the cumulative deviation of edgels from theMpas(the
squared Euclidean distance between pbiabhd tracea). The second term is external

force imposing a penalty for edgels not included in any line (i.e., the edgels with
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M
ZSIS =0). The deformable contour described by Eq. (3.5) was found to have difficulty

=]
reliably evolving into the global minimum of energy in presence of noise and gaps.
Muresan et al, [1997] improved the convergence by setting the contours’ initial
configurations to the rigid contours obtained by the Hough transform.
3.3.2.5. From saliency map to contours

In the absence of a top-down supervision, analysis of the saliency map is driven by
the map features called “activation spots” that stand out against the background. A model
architecture for this process was proposed by Koch and Ullh®85] based on a study
of human visual psychophysics by Posner and Cohen [1984]. To extract more than one
activation spot that may be present in the saliency map, an iterative procedure attends the
spots sequentially and then blocks them from further searclet Igi. [1999] built a
visual attention system that implements this concept using the “winner take all’ (WTA)
neural network for selection of most salient features in the saliency map. The WTA
neuron is a dynamic “integrate-and-fire” unit that constantly sums its synaptic input and
compares to a threshold value. The WTA network is placed on top of the saliency map
and starts the integration process; the neuron at the map location of the highest saliency
fires first, while all others remain suppressed. This event triggers a switch of the focus of
attention (FOA) to the winning location and activation of the “inhibition of return”
mechanism demonstrated in human visual psychodynamics [Posner and Cohen, 1984]
that resets WTA network and suppresses the saliency map at the winning location from

subsequent analysis.
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3.4. Outlook

A range of early vision techniques exists with good potential for inferring traces from
the RPI plasmagrams. In reviewing them, a greater attention was paid to approaches of
biological plausibility, primarily because of the fact that human vision solves the task.
There is a class of models that comply with Marr’s paradigm, a bottom-up archetype that
builds the visual target out of simpler elements of increasing perceptual strength. There is
an abundance of evidence that mammal pre-attentive vision conforms to the Marr's
paradigm. In the next chapter we will analyze how the task of plasmagram trace
recognition fits into the frame of pre-attentive vision models and discuss the measures

taken to improve the robustness of the processing.
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CHAPTER 4. TRACE RECOGNITION

An increasing number of the real-world applications can be delegated to an artificial
vision system. Searching for the traces in the RPI plasmagrams is one such application
presenting particular importance to the RPI mission team and space research community
at large. This chapter discusses the unique features of the plasmagram images and

describes the pre-attentive vision model for their processing.

4.1. Uniqueness of Plasmagram Signatures

The task of plasmagram trace recognition presents a unique challenge to existing
methods because of a combination of factors. Fundamentally, there is litleri
information available on the possible occurrence and number of the traces, and there is no
simple function that models their shape. Thus, even though more knowledge is collected
about plasmagram traces, the trace extraction algorithm is still unable to use top-down
considerations at this time. In the bottom-up, pre-attentive approach to the recognition
task, the vision model regards the plasmagrams as non-specific images with lines.
Furthermore, the plasmagrams are collected in an unknown, tremendously variable
environment using a low-power probing signal that often arrives near or below the
background noise level associated with natural radio emissions. The need for a trace
extraction algorithm to be adaptive to a range of signal-to-noise ratios (SNR) makes the

recognition task unique and difficult.
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4.1.1. Variable Signal-to-Noise Ratios

The echo trace if often weak, as in Figure 4.1 showing an example plasmagram taken
on June 29, 2001 03:13 UT where a faint trace can barely be seen spanning frequencies
from 65 to 120 kHz. Besides the trace being globally weak, it can display various levels
of SNR within a single plasmagram due to differences between noise characteristics on
different frequencies and changing conditions for the signal propagation depending on

orientation of the RPI antenna system that slowly rotates in space.

2001-Jun-29 03:13 UT

Virtual Range, Re

Armp [HERYm]

60 65 T0 75 30 35 90 95 100 105 110 115 120 125
Frequency, kHz

Figure 4.1. Plasmagram taken on Jun 29, 2001 03:13 UT containing
two traces with a low signal-to-noise ratio.

Figure 4.2 shows a plasmagram taken on June 29, 2001 03:00 UT, where some parts

of the trace are missing whereas others are well-defined.
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2001-Jun-29 03:00 UT
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Am X

60 0 80 90 100 110 120
Frequency, kHz

Figure 4.2. Plasmagram taken on Jun 29, 2001 03:00 UT showing a
trace of variable signal-to-noise ratio across the
frequencies.

Noise characteristics vary substantially not only from frequency to frequency, but
also with spacecraft location and time. Global events in the solar-terrestrial system cause
frequent increases in the natural radio emissions in space (e.g., auroral kilometric
radiation, solar radio bursts). These emissions often have highly irregular structure
causing numerous false positives of the differentiation operator in the edge detector.
Figure 4.3 presents a plasmagram taken during one of such event on Jul 9, 2003 18:24
UT with an increased level of noise in the frequency band between 210 and 260 kHz.

Each frequency within the band contains multiple pseudo-echo signatures resulting from
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the highly variable structure of the noise as shown in the Panel 4.3(a) in detail; the echo

detector produces a large number of false positives for this case (b).
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Figure 4.3. Plasmagram taken on Jul 9, 2003 18:24 UT during high
radio emission activity in the frequency band between
210 and 260 kHz (shown in detail in panel (a)). The
emissions cause multiple false positives of the echo

detector (b).

Low SNR results in false positive and negative rates of the edge detector. The
problem of trace gaps is at times severe, and faint traces can mix with stronger traces in
the same plasmagram because certain propagation modes experience signal attenuation
because of increased absorption in plasma or unfavorable orientation of antenna.
Inconsistent trace quality makes local grouping techniques inapplicable because of the

need to process edgels over a large context scale for proper identification.
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4.1.2. Range Jitter

In contrast to the airport radar whose echoes are coming from well-defined targets,
the RPI echo is a result of reflection from a relatively large area of a complex structure
exhibiting dynamic movements and irregularity of various scales. A single echo detected
by RPI may be a combination of multiple echoes arriving with similar propagation times,
where the overlapping causes distortions of the echo envelope. In this case it is difficult
to determine its leading edge precisely, and it is not unusual for the resulting trace line to

display a substantial range jitter (deviation up or down from the trace line).

This range jitter causes errors in the rigid contour approaches and grouping
techniques that employ the Gestalt principle of smoothness. Figure 4.4 illustrates
performance of the linear Hough transform applied to an edgel pattern consisting of four
echoes comprising the straight line and one noise spike (left panel) and to the same
pattern affected by a range jitter (right panel). Because edgel positions are used for fitting

directly, the corresponding histogram peaks are washed out.

Figure 4.4. Hough transform applied to low (left) and high (right)
range jitter patterns
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Muresanet al [1997] studied the washout problem to conclude that if edgels deviate
from the trace line, the HT is applicable only as a pre-processing algorithm that derives

an approximate number of trace segments and a rough evaluation of their position.

Range jitter causes errors in evaluation of the local contour orientation for the edgels,
subsequently resulting in misalignment of the long-range interaction pattern. Figure 4.5

shows a simulated edgel pattern illustrating this effect.

S
e

Figure 4.5. Simulation of range jitter causing misalignment of the
edgel interaction pattern and low salience

In this example, two edgels in the middle of the pattern are slightly misplaced from
the trace line and data gaps are inserted on both sides. Local context algorithm produces
wrong orientation of contour at both edgel locations. The saliency measure is then made

very low for both edgels, a direct consequence of the range jitter and data gaps.
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4.1.3. Closely Spaced Traces
Another problem for conventional saliency measure approaches is the need to resolve
plasmagram traces that lie close to each other. If one of the traces is short, its saliency
measure will not be comparable to its longer neighbor’s, resulting in the complete loss of
this shorter trace in the map as the point of attention attends the strongest saliencies in the
image. In plasmagrams, such a shorter trace typically corresponds to the O-polarization

waves that accompany the stronger X-polarization trace.

4.1.4. Range and Frequency Resolution Artifacts

Most of the time, the frequency and range resolution of plasmagram images are
insufficient to capture traces adequately. The RPI operates at very low pulse repetition
rate because of the need to record echoes arriving at great distances. Thus there is an
upper limit on the number of probed frequencies to keep total plasmagram measurement
time reasonable to satisfy a requirement of high cadence of measurements as the
spacecraft orbits the Earth. With the number of frequencies kept under control, the need
for the RPI to accommodate a broad range of possible scenarios in the environment
means that wider frequency coverage is always chosen over better frequency resolution.
Another important requirement limits the telemetry data volume, which decreases the
number of range bins and makes the range resolution coarser. Thus the traces are
commonly thin and often are just one pixel wide. Conventional smoothing filters that

protect the edge detector from noise can damage thin trace signatures.
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4.2. Approach

Range jitter, data gaps, false echoes, and nearby traces are the reasons for frequent
problems with calculation of local edgel orientations and subsequent saliency analysis
techniques that are based on the static oriented patterns of edgel interaction [Guy and
Medioni, 1996, Yen and Finkel, 1998]. The saliency evaluation has to allow edgel
orientations to be modified by the global scale process, because the problems with local
estimates can only be identified on the global scale. The saliency calculation then
becomes an optimization process that refines the local orientations. An additional layer is
therefore introduced in the Marr’s pyramid for the oriented edgels that can change their
orientation, rotors (as in Peterson’s rotor model [1989]). In contrast to the oriented
edgels, the rotors have freedom to rotate depending on facilitation from other rotors in the
vicinity. As every change of a rotor modifies the degree of facilitation, the whole
optimization process is made iterative and thus is best described in terms of the energy
minimization (as discussed in the Chapter 3). The interactions between the rotors are not
forced to comply with any specific trace model, but rather are governed by the general
Gestalt laws of perception, plus some other considerations as discussed later in the

chapter.

Optimizing the rotor pattern can be computationally demanding, considering that
number of single rotor interactions to evaluate in a fully connected network grows with
the number of rotors @(N?). This is the reason why Gestalt-based saliency calculations
based on the fully connected iterative neural networks are rather exceptional. A number

of measures were devised to decrease the computational difficulty. In particular, we use
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the fact that RPI echoes are recognized only if they are above the noise level, and so we
apply echo detection techniques to suppress irrelevant information from entering the

saliency calculations. These questions are further discussed in the Section 4.3.

Figure 4.6 shows extended version of the Marr’s pyramid for trace extraction in the
plasmagrams. Below we describe the perceptual elements on all levels of the pyramid in

relation to RPI plasmagrams.

Traces

Trace Segments
Saliency Map
Rotors
Edgels
Echoes

Raw Image

\

Figure 4.6. Extended Marr's pyramid of perception for plasmagram
processing.

Raw Image Raw image is an (N x M) matrix of pixels, each pixel representing the

RPI antenna voltage.

Echoes The first stage of processing labels the pixels of the plasmagram image that
potentially belong to the RPI signal. The labeling is accomplished using an adaptive

thresholding algorithm, a frequency-scanning radar echo detection technique that
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evaluates the threshold level for each frequency individually using an estimate of

background noise and then labels those pixels that exceed the threshold levels as echoes.

Edgels The range interval taken by an echo is reduced to a single point
corresponding to its time of arrival (TOA). This operation is very similar to selection of
the edgels, but using only the leading edges of the echoes. Later in the text the TOA
points are referred to as edgels (edge elements) to indicate that they constitute the leading

edge of a trace.

Rotors Classic early vision model for contour extraction suggeststed edgelas
the next degree of perceptual strength in the pyramid (see Section 3.1) The edgel
orientation is commonly obtained by seeking gradients of image intensity within a local
context window around the edgel. Local context techniques, however, do not yield
reliable edgel orientations in various situations requiring a larger context area to correctly
identify the trace. Orientation of edgels is modified by a global-scale optimization
process. Rotors are oriented edgels that can rotate under facilitation from neighboring

rotors.

Saliency mapLong-range, collective analysis of rotor data results in evaluation of
perceptually stronger quantitgaliency The saliency measure reflects how likely an
edgel is part of a trace. Saliency measures calculated for all edgels constitute the saliency

map of the image.

SegmentsThe saliency map is analyzed to find subsets of edgels belonging to the

same trace. This is a bottom-up procedure typical of the pre-attentive vision, and the
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found subsets may correspond to the segments of traces to be further grouped into

complete traces.

Traces Perceptual grouping of segments into traces corresponds to the attention-
driven recognition, where certain assumptions are made about the model of the trace
shape. The grouping algorithm switches attention between found pre-attentive vision cues

to evaluate their support of the model.

The next section discusses the questions of reducing the number of edgels before the

optimization of the rotor alignment starts.

4.3. Transition from Raw Image to Edgels

Direct application of the conventional leading edge detectors to the plasmagrams
would cause a severe false positive rate because of their sensitivity to every gradient of
intensity in the image. Robust edgel detectors explore various possibilities to distinguish
signal from noise. Common approaches to the problem (e.g., [Ziou and Tab®88p,
involve smoothing to remove the noise variability, thresholding to suppress weaker noise,
and local tests of the signal integrity across adjacent pixels. Most of these commonly
used measures are damaging, to varying degree, on the signal in plasmagrams. In contrast
to the typical scenarios of object identification in visual scenes, the plasmagram traces are

thin and faint signatures in the noise background of irregular and varying nature.

Figure 4.7 presents an example of the leading edge detection in the plasmagram taken

on March 2, 2002, 04:46 UT.
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Figure 4.7. Edgel labeling for an example plasmagram (a) taken on March 2, 2002, 04:46
UT. Direct edgel detection (b) produces a large number of false edgels even

with the thresholding of the amplitude gradient. (c) Application of the

smoothing 3x3 median filter prior to edgel detection reduces the noise edgels
but damages thin traces (d). The chosen approach (e) uses the adaptive local
thresholding to detect echoes and then labels the leading edges (f).
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Panel 4.7(a) shows the raw plasmagram image and the direct detection results
obtained by the “zero-crossing” double differentiation operator that seeks the point of
largest intensity gradient, Panel 4.7(b). Even though found amplitude gradients that are
smaller than 6 dB were suppressed, the background noise captured by the RPI receivers
still produce an overwhelming number of false edgels in Panel 4.7(b). The second row of
the Figure 4.7 illustrates common effects of a smoothing filter that protects the
differentiation operator from noise. The plasmagram image is smoothed with a 3x3
median filter (Panel 4.7(c)), and then the edgel detection is done with the same algorithm
as before. The results shown in Panel 4.7(d) indicate that the amount of smoothing is still
not sufficient to suppress enough noise, whereas the thin traces in the upper frequency

band are already damaged.

The specific nature of the remote sensing data opens an opportunity for noise
protection without smoothing, known in radar literatureeabo detectionin remote
sensing, the useful information comes from the signal returns (echoes) that are overlaid
with the background noise. Remote sensing systems are designed to ensure that the
echoes are detectable in the variable noise environment. A suite of adaptive (robust)
methods has been developed to dynamically estimate the characteristics of noise
background and applthresholdingto appropriately suppress the noise, leaving the
echoes intact (see, for example, Schleh®88(]). The adaptive echo detection techniques
relies on a statistical approach, where the probability distribution function of noise is
often assumed known and its parameters are estimated from the data, for each frequency

individually. The class of detection techniques that adjust their threshold level as noise
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characteristics vary is often called “constant false alarm rate” (CFAR), from the early

days when they were successful in relieving radars from excessive false alarms during
jamming or periods of higher interference. Figure 4.8 gives an example of the adaptive
echo detection algorithm used in Digisonde [Reinid&®q, which calculates the most

probable value of the amplitude distribution to estimate the noise level.
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Figure 4.8. Echo detection by adaptive amplitude thresholding. (a) One
frequency scan with intervals taken by echoes, (b)
amplitude histogram used to determine the threshold level.

The echo detection algorithm that selects the mode of the amplitude distribution as
the noise level assumes that this noise level is the same for all ranges, which is not
necessarily true in case of the RPI sounding. We use an adaptive detection algorithm
“AvTrend” [Galkin et al, 2004] that uses a short-length surround window that slides over
the ranges (see Figure 4.9). The AvTrend algorithm labels a ipiasl echo if its
amplitudeA; exceeds a threshold valliecalculated over the surround window of dite

placed at the tested pixel. The threshold value is set to the average amplitude within the
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window (excluding the pixel itself) plus a fixed valu®. The algorithm is designed to
detect signals above the noise level that are narrow enough to fit within the surround
window and leave room for the background amplitudes that produce the threshold value.
The one-dimensional window is placed on the plasmagrams vertically to avoid influence
of the neighboring frequencies that may have significantly different levels of noise and
signal. The third row of Figure 4.7 shows the plasmagram processed by this algorithm

that eliminates background noise without the artifacts of smoothing.
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Figure 4.9. Example processing with AvTrend echo detection algorithm. Sliding
window of N=7 points is placed at the range bin shown in black. Window
average amplitude is calculated over 6 points and the threshold is set D
units higher. The range bin in this example is classified as echo because its

amplitude exceeds the threshold.
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4.4. Transition from Edgels to Rotors

The orientation of edgels is obtained using a steerable narrow sector placed on top of
the edgel. After a number of sector orientations is tested, the edgel orientation is set along
the direction of maximum number of other edges found within the sector. The actual
steering algorithm implements the so-called angular histogramming technique [Baginyan
et al., 1994], which is a version of the linear Hough Transform (HT) reworked for a
higher computing efficiency. The angular histogramming algorithm samples the edgel
distribution itself instead of the parameter space as the classic HT does by fitting trial
straight lines through all pairs of the base edgel with the neighboring edgels (Figure
4.10). The elevation angle of the trial lines is binned to obtain a histogram of angles and

select the angle of highest occurrence.
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Figure 4.10.Use of angular histogramming algorithm [Bagynyan et al, 1994] to
evaluate edgel orientation (example). (a) Angular histogram is built from
elevation angle of all trial straight lines going through the base edgel and
all nearby edgels within the circle of radids (b) The angle of highest
occurrence in the histogram is selected as the edgel orientation.



62

4.5. Transition from Rotors to Saliency Map

Calculation of the saliency score for an edgel (see discussion in Section 3.3.2.4)
involves counting contributions from many other edgels in its vicinity. The score
calculation is commonly done for the static oriented edgels that do not change their
orientation during the process. This scheme can benefit from the iterative optimization
approach of the rotor models [Peterson, 1990], where the rotors have freedom to rotate
seeking the best saliency score. Figure 4.11 shows how a single neuron in the neural
network receives facilitating inputs from other neurons in its vicinity. The synaptic
weights W are not constant; instead, they are calculated dynamically depending on
distance and mutual orientation of two interacting rotors. The optimization process
corrects errors of local estimates of the initial rotor orientations by extending the context

area to a larger scale where these errors are visible.
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Figure 4.11.Artificial neuron for rotor interaction.
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Previous implementations of the rotor model optimizers in high-energy physics
[Bagynian et al., 1994] and ionospheric sounding [Galkin et al., 1996] were able to
demonstrate successful operation on the imagery data of rather consistent quality and
content. We first studied performance of the conventional Peterson model with the co-
circularity criterion introduced by Baginyast al. [1994] on the RPI plasmagrams and
then discuss improvements to the optimizer design to better handle specifics of the task.
We will refer to the improved optimizer for RPI plasmagram processing as ANNA

(Artificial Neural Network Algorithm).

4.5.1. Co-circular Rotor Model Neurodynamics

The neural optimizer by Baginyan et al. [1994] discussed in Section 3.3.2.4 reaches
the global minimum in its energy function when the rotors are aligned tangential to the
circle going through the interacting rotors. This is equivalent to the Gestalt principle of
co-circularity, so we will refer to this rotor model as “co-circular”. Figure 4.12 illustrates

this concept with a simulated edgel pattern where 8 edgels are placed on a circle.

(a) (b) (c)

Figure 4.12.Processing of a synthesized edgel pattern by a circular model of
rotor interaction: (a) edgel pattern, (b) initial rotor placement by
angular histogramming, (c) results of ANNA optimization.
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Left panel of the figure shows the pattern with randomly chosen initial orientations of the

rotors, and right panel present the results of rotor optimization by the co-circular model,
obtained after 25 iterations with the constant temperature of 2.

For convenience, we repeat here Figure 3.13 illustrating the algorithm of calculating
facilitation contributions in the co-circular rotor model:

Figure 4.13.Circular model for rotor network by Baginya al, [1994]

The strength of interaction is maximal when both edgels are tangential to the circle
connecting edgelsand). The circle is determined uniquely for each pair of edgaisl]
using the location of edgels and orientation of the post-synaptic Votdfacilitating

contribution of pre-synapti¢; on post-synaptiv; is:

v/ (cosa, )

S

ij

(4.1)
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Herea; is angle between rotoxg andV;, whereV; is obtained by flippingy/; around the

chord Cj. Use of theV| factor assures that longer vectors give higher contributions,

whereas factor(cosaij )aenforces co-circularity of the vectors. Finall ‘C factor

b
ij‘

attenuates facilitation of more distant edgels. Paramatarslb regulate how fast the

contribution falls with misalignment and distance.

Study of the co-circular optimizer performance on the random initial orientation of
the rotors identifies a stable false minimum of its energy function where the rotors are
aligned normal to the circle instead of tangential. As can be seen from the Figure 4.14,

the flipped vectorV; aligns with the post-synaptic vectdf; perfectly, so that rotors

deviating from this orientation will be pulled back.

Figure 4.14.Rotor configuration corresponding to the strong false
minimum of the Baginyan rotor model energy.

Because of the strong false minimum in the energy function of the Baginyan rotor model,

it is important for the initial rotor orientation to be as close to the optimal configuration as
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possible; otherwise the rotor network may evolve into the false minimum. It is also
important to properly design the annealing scheme so that the mean-field theory (MFT)
mechanism makes it possible for the network evolving to tunnel through the barriers on

the way to the global minimum of the energy.

It was not possible to use a fixed temperature or a static annealing scheme for
processing of plasmagram data due to the fact that number of interacting rotors varies
substantially from plasmagram to plasmagram. In the MFT evolving of the neural
network, the sum of weighted inputs in the neuron goes through the sigmoid function (see
also Figure 3.8):

Sw),

O =tanH 2" 4.2
T (4.2)

whereO is the post-synaptic neuron outplytare the pre-synaptic neuron inpiig,are
synaptic weights, and@l is annealing temperature. Figure 4.15 shows the sigmoid function
chart illustrating how inappropriate choice of temperaiureay lead to saturation if the
argument of hyperbolic tangent is greater than 1 or smaller than -1. If neurons go into
saturation too early in the evolving process (starting temperature too small), the network
loses its ability to tunnel through the barriers of the energy function, in which case it is
likely to stop in a local minimum of the energy function. If the starting temperature is set
too high, neuron outputs become insignificant at the first step of evolving and may
remain small during the course of annealing, so that the final saliency measure is too

small for the segment extraction algorithm to consider it.
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Figure 4.15.Sigmoid function of the MFT neuron with region of
optimal performance as indicated.

To keep the neural network in the optimal operating range, ANNA annealing scheme
uses estimates of the edgel density to calculate starting and ending temperature of

annealing individually for each plasmagram.

4.5.2. Improved Rotor Interaction Pattern

The co-circular rotor interaction model (Eq. 4.1) does not work well at short distances

due to the range jitter in the edgel data. Figure 4.16 shows a simulated example of co-
circular processing for a set of 5 edgels belonging to a straight horizontal line segment.
The range of edgel j was overestimated because of distortions in the echo shape, which

resulted in a weak contribution f to V; as the angle; between flipped rotdv ; andV;

is too large.
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Figure 4.16.Close-range co-circular interaction of rotors in range
jitter conditions (simulated example). Due to the
overestimated range of edgel j, contribution of ropr
to rotorV, is too small.

Poor performance of co-circular interaction model at short distances warrants
introduction of a different model of interaction for rotors that are close to each other. The
same idea can be found in other vision models (see Section 3.3.2.4) where the short
distance interaction pattern is different from the long-distance pattern. For example, the
Yen and Finkel [1998] model (Figure 3.7) contains a transaxial pattern for short-range
interaction where simple parallelism constraint is used instead of the co-circularity.

Similarly, ANNA uses the parallelism constraint for facilitation at short distances:

S =— (4.3)

A recognized problem of saliency calculating algorithms is analysis of weak contours
in the vicinity of strong contours. Figure 4.17 (a-b) show a simulated pattern of two sets

of edgels belonging to two different contours, one set having a weaker saliency.
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Figure 4.17.Saliency calculations for a weak contour in vicinity of a stronger contour
(simulated pattern). (a) Simulated image of two traces. (b) Edgel pattern.
(c) Initial rotor orientation. (d,e) Optimized rotor orientations and
resulting trace segments obtained with a conventional circular model.
Weak contour rotors are attracted to the stronger contour. (f,g) ANNA
model processing with added dead zones in the interaction pattern.
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In spite of attenuation of contributions from the rotors belonging to the stronger
contour (because they are not aligned perfectly with the weak contour), they still
dominate the rotors of the weak contour and rotate them in a wrong direction. This
problem happens because the summary facilitating input from the strong contour still
exceeds total input from the member edgels if the weak contour, thus resulting in

attraction of the post-synaptic rotors to the wrong contour (Figure 4.17 (d-e)).

Psychophysical studies of the human vision show existence of two dead zones outside
the co-axial pattern sector [Yen and Finkel, 1998, Guy and Medioni, 1996] (see Figure
3.7). Typically the dead zones are added by testing the elevationdahgieveen the

chordC; and post-synaptic rotdf;, so that the overall facilitation pattern becomes

S, G <p

(] i
F =1L, G >pandg |<% (4.4)
0, C>p and|6{j | >@/2

wherep is the radius of short-term interaction, @&ds the central angle of the long-term

interaction sector.

Orienting the dead zones on the direction of the post-synaptic Yotdras
disadvantage of being susceptible to mistakes of calculating initial orientation of the
edgelV;. Instead, ANNA calculates the elevation angles of the deadézdretween the
chord C; and pre-synaptic rotor¥;, not Vi. In Figure 4.18, the advantage of this
approach is illustrated by a simulated example where it becomes possible to correct the

local estimate of/; orientation if the dead zones are not placed co-axial with the wrongly
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determinedV;. RotorV; in Panel 4.18(a) is not influenced by the fellow rotors of the
same contour because they fall in the dead zones of the pattern whose orientation was
determined by rotov; and used for all pairs &f andV;. In Panel 4.18(b) the dead zones

are placed individually, depending on orientation of pre-synaptic rotors in the vicinity of
Vi, thus providing better reflection of the majority of rotors aligned to the contours in the

plasmagram image.

e N
e

(a) (b)

Figure 4.18.Placement of the dead zones of rotor interaction. The interaction
pattern is oriented co-axial with (a) post-synaptic rotdr
(conventional), or (b) pre-synaptic rotdf;. In the latter case,
error in initial evaluation ofV; orientation will be corrected
during evolving of the neural network.

Figure 4.17 (f-g) shows improvement of the rotor optimization on an edgel pattern
with introduction of the dead zones. It also serves as a good illustration of advantages of

our approach to trace extraction. Although some of the local estimates of edgel
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orientations (Figure 4.17(c)) turn out to be wrong, the rotor optimization process refines

them to produce a better saliency map and ultimately better trace segments.

Finally, the saliency measure for edgelis calculated as vector sum of all

contributionsF;; from the neighboring edgels on eddel

Y, :Z F (4.5)

j#i
Thus, the saliency measure is a vector quantity reflecting both perceptual strength and

trace orientation of the edgels.

4.6. Transition from Saliency Map to Contour Segments

Biophysical studies of contour extraction in mammals’ vision system show that areas
of brain cortex stimulated by high-saliency edgels of the same contour exhibit
synchronous excitation [Yeet al, 1999]. Common model for synchronization of
individual saliency measures in the saliency map suggests evaluation of both alignment
and distance between cortex cells and binding (synchronizing) pairs of cells in
agreement. In our case, this process is best accomplished by bottom-up clustering driven
by the rotor alignment. The clustering starts with the highest degree of alignment and
continues until the stop value is reached. Additional measures are taken to avoid

bifurcation during the process of joining segments together.
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4.7. Transition from Contour Segments to Contours

Additional grouping may be required to combine segments produced by the
clustering algorithm. All possible segment combinations are searched exhaustively, and a
grouping scoreQ; is determined for each pair of segmentandj similarly to the

reconnection criterion of Lee and Talbot [1995] as:

Q =1A +(1-1)G =2 &ﬂﬁiﬂl—)l)%i (4.6)

The scoreQj; includes a connection smoothness tégnand a connection gap term
G;j. Coefficient) regulates relative contribution of termg andG; to the overall score.
The smoothness of connectiol,;, is characterized by angleg and g; between the
straight line connecting two segments and the straight lines fitted through the connection
area to the segment tips. Figure 4.19 illustrates evaluatidn with an example where
two segments andj, each containing 7 points, are considered for connection. The gap
connector line is first built, joining the end points of the segments (shown in red) with a
straight line. Then two fit windows are placed at the end points of the segments to
determine orientation of the segment tips in the gap area. The fit window in this example
is 7 point wide. A straight line is fitted to the points within the window using a least-
square fit technique (shown in blue). Inclusion of the gap connector points in the fit
window accomplishes a greater robustness to the range resolution jitter. dreptety;

are taken between the gap connector line and the lines fitted to the segment tips.
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Figure 4.19.Evaluation of theo; and B; angles for the connection
smoothness term in grouping score [Galkin et al., 2004].

The connection gap ter@; in the grouping score governs contribution of the gap
between segments;, to the grouping scor® is the scale parameter keepi@gwithin
the interval of (0,1). At each exhaustive trial of segment pairs for reconnection, only two
segments with the best connection score are combined together, provided that their
grouping score is below a fixed threshold value. The segment grouping is continued until

no segments can be joined.

Chapter 6 discussed performance of the trace extraction algorithms in further detail.
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CHAPTER 5. PROCESSING OF RESONANCE SIGNATURES

The RPI plasmagrams contain not only a variety of traces pertaining to the remote
plasma structures and boundaries, but also a suite of the local plasma resonances
stimulated by the RPI radio transmissions. Detection and interpretation of the resonance
signatures is a valuable diagnostic tool providing the actual electron density and magnetic
field strength at the spacecraft location, which are needed for the accurate processing of
the remote sensing information in the plasmagrams. Resonance matching is performed on
the plasmagrams prior to trace extraction to remove identified resonance signatures from

the image thereby simplifying further processing.

5.1. Resonance Detection in Plasma Sounding Data: Previous
Work

Resonance signatures have been observed by a number of space missions carrying a
topside ionosonde or a relaxation sounder. Table 5.1 and 5.2 list all missions that
included radio transmission in plasma and collected data that could be analyzed for
resonance signatures. The missions are roughly divided in two sections for the sounders
capable of stepped-frequency remote sensing of the distant plasma structures and the
relaxation sounders whose low power is enough only to stimulate resonances of the local

plasma.
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Table 5.1. Remote Sensing Sounders
Mission Nation | Starting Year Automatic data processing
Alouette 1, 2 USA 1962, 1965 “TOPIST"
ISIS 1, 2 USA | 1965, 1971 | [Huangetal.2002]
ISS B Japan 1978 [lgt al.,1982]
InterKosmos-19 USSR 1979
[Voevudskyet al.,1981]
Kosmos 1809 USSR 1986
EXOSB,C,D Japan 1981, 1984, 1989 [Obetral, 1990]
CORONAS-I Russia 1994
MIR Priroda Russia 1999
CORPRAL
IMAGE RPI USA 2000

[Galkin et el, 2004]
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Table 5.2. Relaxation Sounders

Mission Nation Starting Operation Automatic
Year regions processing
GEOS 1,2 USA 1965, 1968Topside
ionosphere
ISEE 1 USA 1977 Magnetosphergrotignonet al.,
magnetotail, 1986]
Solar wind
EXOS B Japan 1978 lonosphere,
magnetosphere
VIKING Sweden 1986 Magnetosphere
Ulysses International 1990 Interplanetary
Interball-2 Internationall 1996 Magnetosphere
POLRAD
Cluster 2 Europe 2000 Various [Trotignonet al.,
Whisper 2001]

Interpretation of resonances requires matching of all observed signatures to model
values (see Chapter 2, Section 2.2.2 for theoretical background). The matching process
involves a certain amount of simple calculations that are time consuming to carry out
manually. Automatic resonance matching algorithms have been developed since the early

1980s, all using the known relations between resonance frequencies to build a resonance
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model and fit it to the data by testing candidate combinations of the gyrofrequency and
plasma frequencig andfye that drive the model. Huang and Reinisch [1982] and Huang
et al.,[2002] developed an automated resonance detection algorithm that is now a part of
the TOPIST system for autoscaling topside ionograms from the Alouette and ISIS
sounders [http://nssdc.gsfc.naga/spacelisis/isis-status.html]. This algorithm seeks the
“best” combination of the X-mode cutoff frequency and the gyrofrequency that
maximizes the amplitude sum over range bins extending to 500 km on 5 frequencies: (1)
O-mode cutoff or local plasma frequerfgy (2) X-mode cutoff frequencly, (3) upper

hybrid frequencyi, and (4) and (5) two neighboring gyrofrequency harmorfigand
(n+1). Selected to be close to the other resonances within the ionogram imagjel.lgi
[1982] developed a similar algorithm for the topside sounder on the ISS-B spacecraft

using two separate fits, one for the gyrofrequégncgnd another for the tripldge, fun, fx.

Trotignon et al. [1986] reported successful algorithmic solutions to the task of
extracting resonance signatures from the ISEE-1 relaxation sounder data. The ISEE-1
satellite had a highly elliptic orbit with an apogee of ~ 23Barth’s radius = 6,375 km)
and a perigee of 280 km and therefore observed a wide range of plasma densities in the
solar wind, magnetosheath, magnetosphere, and magnetospheric tail. The resonance
signatures in the magnetosphere were found to exhibit the greatest variety and present the
greatest challenge to automated recognition. As a definite advantage for the automated
data analysis, the ISEE-1 had an onboard magnetometer to measure the value of the
gyrofrequency with an accuracy of ~1%. The magnetometer's estimate of the

gyrofrequency was further improved by fine fitting of theharmonics to the sounding
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data. The candidate plasma frequency values were tested in a separate fit. In contrast to
the topside sounders, the best fit was sought for the series of Q-type resoigances,
using a weighted sum to favor the lowest ordergpfMatching offg, was found to be
critically sensitive to the accuracy of the gyrofrequency determination, with errors of only
0.7% still causing misalignment of the fit. A similar matching concept was used in the
resonance interpretation algorithm by Trotigretral. [2001] for the Whisper relaxation
sounder aboard the Cluster-2 spacecraft. An amplitude envelope technique developed by
Trotignon et al. [1986] had limited success, producing unacceptably high rates of false

resonance recognitions.

Considering the results of previous efforts, automated detection and identification of
the resonance signatures in the RPI plasmagrams presents a great challenge because of
the large range of plasma densities probed by RPI in the magnetosphere and the often less
than optimal resolution of the frequency scans. The diversity of the scientific goals that
the RPI targets along the orbit often results in a frequency range and resolution
unfavorable for automatic detection of the key resonance signatures. Finally, no onboard

magnetometer measurements were available to help constriifittieg procedure.

Two avenues can be pursued regarding the recognition of the resonances, (1)
detection of the individual resonance signatures and their subsequent classification, or (2)
search of the optimal fitting of the composite resonance model to the entire plasmagram

image. Both approaches are detailed and compared below.
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5.2. Fitting composite resonance model

Because of specifics of the RPI measurement scenario, the automated fitting
algorithm cannot rely on the guaranteed presence of any particular resonance on each
plasmagram. RPI is a versatile instrument that adjusts its sounding frequencies along the
spacecraft orbit to match changes in the plasma density and to meet a variety of scientific
goals. Because of dynamic allocation of the frequencies from the operating band of 3 kHz
to 3 MHz with either constant or logarithmically changing frequency steps ranging in size
from 300 Hz to tens of kilohertz, the RPI measurement parameters are often far from
optimal to properly study the resonances. Compromises in the operating frequency band
and resolution are commonly made to balance requirements for a high sounding cadence
and long range coverage. Thus, plasmagrams may contain none &t teeamances or
more than 20 of them, and the frequency resolution may be fine enough to cover the
resonance amplitude peak with several frequency steps, or be as coarse as to completely
miss the resonance. The fitting scheme had to be adjusted to work for a varying number
of resonances/harmonics that may be present on plasmagrams. The coarse frequency
resolution effects were considered by determining whether the tested resonance is too far
from the closest plasmagram frequency. As a result, the number of frequencies whose
summary amplitudes contribute to the total fit quality becomes different for different sets
of the drivingfeeandf,e With a varying number of contributors at each fitting step , the
fit quality cannot be calculated as the total sum, and therefore the “average fit” was used

as the fit quality criterion:
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S, (1)
i :;’T 4

subset of plasmagram frequenciéscorresponding to the model

resonance frequencies calculated for the trial gyrofrequéfityand the

trial plasma frequencf/)’, such that each model frequency of the subset

falls within the interval of ftA,, f+A) of a plasmagram frequendy
wherel, is the half-width of the expected frequency band taken by the
resonance signature,

size off f}ij ,

summary amplitude calculated over all ranges< 1R at the

plasmagram frequendyi.e.,

Sk ()= 2 A(F) (5)

r<iRg

whereA(f) is linear signal amplitude of the plasmagram bjf).(

For this fitting method to work, the true valuesf@fandf,e have to be in the set of

tested combinations, and the fit has to be robust to other data features such as traces and

interference lines. The set of trial frequencig8 and f))is obtained by selecting low

and high boundaries around the predicted model values of gyrofrequghcyr(d
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plasma frequencyfg),. Then the frequency stepAc. and A, are selected that
determine how many trial frequencies are selected from the interval around the model

values.

The Geopack Model of the Earth’'s magnetic field [Tsyganenko, 1i890%ed to
obtain €)p. Most of the time, the interval af5% around fe), is sufficient, except for
periods of high magnetic activity at large radial distances from the Earth, when the
interval is increased tH40%. The prediction of the local plasma frequerigd,(is even
more uncertain, especially when the spacecraft is in the vicinity of the modeled
plasmapause or magnetopause. The actual value may be one or two orders of magnitude
off the modeled value. To make computational matters worse, the composite model
appears to be sensitive to even a fraction of one per cent deviations of ttg anmifte
from the true values, so that practically all plasmagrams require sub-pixel accuracy of the
resonance signature localization (i.e., better than the frequency resolution of the
plasmagram), and the trial frequency stépsandA,e are forced to be as small as 0.1
kHz. The resulting computing time of the composite model fit becomes unacceptable in
the framework of the interactive data analysis with the BinBrowser tool [Getlkéh,

2001], where the scaler starts the automated resonance matching and walits for its results.

Splitting the composite model in two separate fits, as ietlgi.,[1986], reduces the
computing time but leads to unsatisfactory false recognition rates, primarily because of
the sensitivity of the gyrofrequency fitting to the presence of other resonances, noise, and
natural emission bands. Introduction of heuristics to improve noise resistance was

attempted, but did not solve the problem. Even if there were no resonance signatures on
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the plasmagram, the model fit approach would still give a best-fit solution. Therefore a
method was developed that is able to locate and match the resonance signatures when

they are present as well as identify the lack of resonance signatures when they are absent.

5.3. Detecting and Matching Plasmagram Resonances

Instead of fitting the composite model of resonances directly to a plasmagram image,
the image is first analyzed to identify frequencies that are potential resonances, and then a
matching algorithm is applied to classify these candidates as either a particular resonance

type or a noise (interference) line.

5.3.1. Resonance Detection

5.3.1.1. SMOOTHING. A great variety of noise reduction and signal enhancement
techniques have been devised to improve the quality of signature detection in images.
Ziou and TabbonelP98] give a review of conventional image smoothing filters and
arguments for their use. For this approach a novel filter was designed to improve the
quality of resonance detection in plasmagrams, since the analysis of applicable classic 2D
ridge detection filters [e.g., Subirana-Vilanova, 1992] showed that they tend to wash out
and displace the subtle resonance signatures. The new 1D filter replaces each amplitude

of the scan4,, with the median calculated over the amplitudes with smaller virtual range,

F(A) = mediaf A}, j = [1,1]. (5.1)
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This concept is further referred to in the text as the “cumulative median”. The
cumulative median filter has a smoothing scale that gradually increases with range, so
that it applies less smoothing at the lower ranges, preserving the resonance signature
shape, and eventually arrives at a robust estimate of the average background level for that
frequency. Besides providing protection of further processing stages from random noise
and jitter, the cumulative median filter enhances a patrticular type of signature whose
amplitude decreases with range and suppresses all others. It is effectively matched to the
expected shape of the resonance envelope that should have a falling slope due to eventual
loss of the wave power. Figure 5.1 illustrates the response of the cumulative median filter

to synthesized signals with rising and falling envelopes.

100 1

Amplitude
Amplitude

Figure 5.1 Response of the cumulative median filter to synthesized
signals with falling (a) and rising (b) envelopes. The filter
elevates the falling envelope that the resonance signatures
are expected to display and reduces the rising slope, thus
improving the signature contrast.
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This filter enhances the falling shape (Figure 5.1a) and reduces the rising slope
(Figure 5.1b), thus improving the contrast of resonances in the plasmagram. Figure 5.2
demonstrates the noise-suppression performance of the filter applied to the same signal
shapes with the addition of 30% white noise. In both cases the filter successfully removes

the jitter and improves the contrast of the resonance.
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Figure 5.2 Response of the cumulative median filter to synthesized
signals with falling (a) and rising (b) envelopes, with the
addition of 30% noise. The filter smoothes the noise and
enhances the contrast of the resonance signatures.

Figure 5.3 illustrates the filter performance on two samples of RPI data collected (a)
on a frequency containing a resonance, and (b) on another frequency without resonance
but with an echo. The cumulative median filter enhances the resonance signature,
smoothes out noise jitter, and removes the echo signature. Figure 5.4 shows a sample RPI

plasmagram obtained on June 28, 2001 at 23:58 UT (a) before and (b) after the filtering
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operation. Smoothing out the noise jitter and the remote echoes visually simplifies the

resonance detection without compromising the accuracy of the frequency registration.
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Figure 5.3 Cumulative median filter applied to RPI data: (a) a
frequency containing resonance, (b) a frequency without
resonance and a single echo.
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5.3.1.2. LABELING. After applying the cumulative median filter, the next processing

step is the resonance signature labeling that tags the frequencies containing resonances
using pattern recognition methods. A two-step labeling procedure is used, where
frequencies that contain no resonances are first excluded, and then frequency groups are
identified that belong to the same resonance. A frequency is excluded from the resonance
analysis if its amplitude envelope does not display the appropriate decay with time. This

is determined by evaluating the slope of the straight line fitted to the envelope using the
least-square fitting technique. This procedure is used together with receiver saturation
criteria that prevent elimination of strong resonances that do not show the expected
amplitude decay. Saturation artifacts are occasionally observed for measurements with
high receiver gains. At any particular fixed base gain, the system dynamic range is
determined by the bit resolution of the voltage digitizer (12 bits = 72 dB) and choice of 4,

8, and 16-chip phase code waveforms that can add up to 24 dB of dynamic range after
pulse compression. The total dynamic range then varies from 72 dB (plain pulse
waveform, fixed gain) to 126 dB (16 chip waveform, 30 dB range of the autogain
adjustment). Commonly the resonance study plasmagrams are made at a smaller dynamic
range setting: (a) pulse compression is not used as it suppresses the plasma waves that do
not have appropriate phase code, and (b) the autogain evaluation is disabled as it requires
an additional 200 ms per frequency that becomes a considerable overhead for the
resonance study measurements. To avoid loosing resonances due to the saturation we do
not exclude any frequencies where 90% of the amplitudes are above the saturation

threshold.
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After exclusion of all frequencies without resonance signatures, the frequency
intervals belonging to the same resonance signatures are determined by collapsing the
image intensities along the vertical axis and seeking the peaks of the resulting summary
amplitude function, $). The status line on top of the plasmagram in Figure 5.4(c) shows

valid frequencies in gray, and the peaks identified in black.

5.3.1.3. CONTRAST EVALUATION. To further improve the robustness of the
matching algorithm, a measure of contrast is calculated for each signature identified, so
that stronger signatures contribute more to the fit quality. To determine the contrast, the
average amplitude of the signature is compared to the average background amplitude. A
statistical technique of differential histogrammings used to distinguish resonances
from the background. In Figure 5.5, the lower amplitude histogram is built using all the
amplitudes from all the range bins in each frequency step contained in a tharkilz
band around the resonance peak frequency, and the upper histogram is calculated over a
wider 2.5 kHz band that is guaranteed to include both resonance and background noise.
Subtracting histogram 1 from histogram 2 leaves only background amplitudes, and their
upper boundary defines the amplitude threshold for the resonance detection. Figure 5.3(d)
shows in magenta the amplitudes exceeding the threshold. After the signature is
localized, its contrast against the background is calculated by averaging the gradients

between the tagged amplitudes and their immediate neighbors.

The resonance detection procedure labels a subset of plasmagram frequencies as
potentially belonging to resonances, and determines tentative location and contrast of the

resonance signatures. This information enters the interpretation algorithm that matches
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the frequencies to their theoretical counterparts. The matching starts with identification of
the resonances produced at the gyrofrequency and its harmonics. Without knowledge of

the actual value df., further interpretation of the plasmagram resonances is impossible.
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Figure 5.5 Use of the differential histogramming technique to estimate
the local detection threshold for the resonance signature.

5.3.2. Matching the Gyrofrequency Resonances

At this point of the analysis, a list of detected resonance-like signatures and a

predicted value of the gyrofrequencig)f, exist. The task then is to find.eresonances
in the list and thus determine the actual valuk.oA number of trialf!’ values around

the predicted value can be examined to determine which one produces the best match.
This fit is different from the previously considered composite or separate model fitting

tasks in that the pattern recognition analysis has provided the actually detected resonance
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signatures. Only those frequencies contribute to the fit that are labeled as containing a

resonance, and the resonances of higher contrast contribute more to the fit quality.

Analysis of the RPI plasmagrams for the gyrofrequency harmonics showed that they
do not always match perfectly to multiplesf@f One of the causes of this mismatch is
the change of spacecraft location (and therdfgreluring the plasmagram measurement,
which is typically 1-3 minutes. The fitting scheme was modified to correct the higher
orders of fie for the expected change in the magnetic field strength as the spacecraft
changes its location. Another consideration was given to possible localization errors and
to insufficient frequency resolution that prevents separation of neighboring resonances.
Figure 5.6 illustrates the general principle of selecting matching signatures next to a trial

frequency, where first preference is given to the closer actual plasmagram frequency.

Trial frequency \
Plasmagram
./ frequencyfn.1

Plasmagran
frequencyf,

A 4
A
U AU

>

Frequency

Figure 5.6 Choice of the actual plasmagram frequencies next to the
trial frequency. If the closest frequency is not tagged as
containing a resonance, the other frequency contributes to
the fit quality with a reduced weight.

If, however, the closest frequency is not identified as valid (i.e., containing a resonance),

the other frequency, if valid, is allowed to contribute to the fit with a lower weight. Both
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plasmagram frequencies are tested if they are still within the expected frequency band
occupied by the resonance through analysis of their deviations from the trial frequency,

A, andA.

5.3.3. Matching the Plasma Frequency Resonance

Fitting of the plasma frequency is affected by the same problems discussed above for
the gyrofrequency fit: (a) insufficient frequency coverage and resolution, (b) changes in
the medium during the plasmagram measurement time, (c) need for sub-pixel accuracy of
the frequency determination, (d) prediction errors. In addition to these common issues,
the model equations describing dependencies of the Q- and D-type resonances on the
plasma frequency, are only approximate. For example, equation (2.2) for the Q-type
resonance frequencies does not always apply to the plasma in the magnetosphere that
may contain a hot component in addition to the (dominant) cold population. In a plasma
that is not described by a Maxwellian distribution, the best match of Q type resonances
based on equation (2.2) will yiefgk andfu, values that are not likely to match any of the
resonances in the plasmagram [Bensbral, 2003a]. Our present algorithm does not

include a match of resonances to the Dn frequencies given by (2.3).

Figure 5.7 shows examples of fully automated resonance processing with the

algorithm developed here.
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The scaled values are compared with predicted fce values based on the Tsy 96-1
magnetic-field model Tsyganenko1996] and the ad-hof;e model [Reinischet al,
2001]. For the three examples, all resonance signatures were recognized and matched
correctly. The modelefle values agreed closely with the measured values, whereas for
foe large differences between the predicted and observed values were observed,
signifying that the plasma conditions were significantly different from the model. As a
result, fun, f;, andfx were also very different from the model. Use of the high frequency
resolution in the plasmagram in the central panel allowed to observe an approximate 1%
mismatch of the model Qn resonances, which is comparable to the observational
uncertainty but may also be caused by deviations of the plasma distribution from the

Maxwellian assumed in the expressions used for Qn.

5.4. Discussion of Results

The three major features that led to successful automated interpretation of the
resonances are (a) use of pattern recognition techniques to detect and evaluate resonance
signatures prior to matching, (b) accounting for changes in the medium during the time
required to acquire a plasmagram, and (c) use of the cumulative median filter for
enhancement of the resonance signatures. The new algorithm now correctly and reliably
interprets a wide range of scenarios found in RPI plasmagrams. Whereas the overall
quality of gyrofrequency automatching is satisfactory, it is often difficult to correctly
identify the plasma frequency resonance. In the case of the former, there is a harmonic

sequence that aids the autodetection algorithm and there is a fairly reliable model to
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constrain the search criteria. In the case of the plasma frequency, neither is available.
While the observed magnetic-field strength can be higher than the quiet-condition model
by tens of percent on disturbed days, the deduced electron density can differ from the

model by factors of ten [Bensemal, 2003b].

Mismatches fall into three general categories, (1) no match can be found because the
medium gradients are different from predicted ones, (2) key signature(s) are either
outside the plasmagram coverage or they are obscured, (3) a false match is selected due

to errors by the resonance signature detector.

5.4.1. Errors in prediction of medium gradients

Noticeable mistakes in predicting the general gradient of gyrofrequafgyare very

rare. It is more common to observe natural fluctuations in the magnetic field that cause
occasional mismatches df. harmonics in plasmagrams taken with high frequency
resolution. The frequency bin selection technique discussed in Section 3.2 allows
mismatched harmonics to still contribute to the quality of the fit if their deviation does
not exceed one frequency step. The gradient of the plasma freqigaadsg, frequently
predicted incorrectly in the vicinity of the plasmapause because of the difficulty in

accurately modeling the location and gradient at this boundary.

5.4.2. False decisions by the signature detector

While selecting plasmagram frequencies as resonances based on the amplitude decay

pattern (Section 3.1.2) discriminates against interference lines, it can also eliminate
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resonances that do not display any significant amplitude decay over the listening time
interval in the plasmagram. It is difficult to select the tagging criterion optimally so as to
minimize both false positive and false negative decisions; the current choice is to allow
false “valid” frequencies to enter the matching phase rather than to remove good
signatures. Although the contribution of such false frequencies to the fit is typically small
because of their low contrast against the background, they still increase the likelihood of

wrong matches.

5.4.3. Key resonance signatures missing or obscured

The automatching algorithm works best when there are a few distinct resonance
signatures present in the plasmagram so that the fit quality maximizes when the model
and the measurements match. If the frequency coverage is not sufficient to include
enough signatures in the plasmagram, the best fit may not correspond to the correct
answer. Also, when thefg and fon separation is not significant (for low ratios of

fpe/ f.) the matching may not be optimal because it relies completely on the proper

identification of foe and fun which can fall outside the frequency coverage or can be

overlapped by other resonances. Proper interpretation of such cases often requires
analysis of the previous and following plasmagrams to confirm changing patterns as
plasma conditions change. Such an analysis, as well as the inclusion of the Dn

frequencies in the matching routine, remains to be done.
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5.5. Unmatched Resonance Study

After the resonance matching is complete, there still may be detected resonance

signatures left unmatched. Unmatched signatures fall into four categories:

1. True signature unmatched to a known resonance frequency because of
deviations of plasma from assumed Maxwellian distribution causing observed

difference from the model.

2. True signature unmatched to a known resonance frequency because of wrong

prediction off or fpe gradients within the time of plasmagram measurement.
3. False positive decision by the signature detector.
4. True signature of unknown nature.

The unmatched resonances are stored in the mission database for further studies.

5.6. Removal of Resonance Signatures

All identified resonance signatures are removed from the plasmagram image to
simplify analysis of traces. The pixels belonging to a signature were previously identified
as a part of contrast evaluation (Section 5.3.1.3), and now they are set to a “missing data”

value to exclude them from further analysis.
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5.7. Conclusion

Detection and interpretation of the resonances in RPI plasmagrams stands as an
important diagnostic tool and a necessary step towards further interpretation of the
remote sensing information contained in these records. Automation of this procedure
relieves the RPI data analyst from tedious calculations. The method described in this
thesis presents a novel approach to automated resonance detection and interpretation in a
plasma environment with large variability like the one encountered by the RPI instrument
on IMAGE. Implementation of this approach into the BinBrowser data visualization and
analysis tool [Galkiret al, 200]] has made it possible to automatically scale all of the
approximately 600 plasmagrams recorded every day by RPI. The algorithm could also

become a useful tool for on-board processing of future active plasma-wave instruments.
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CHAPTER 6. IMPLEMENTATION AND PERFORMANCE STUDY

The trace extraction and resonance automatching algorithms have been implemented
in a Cognitive Online Rpi Plasmagram Ranking ALgorithm (CORPRAL) [Gadkial,
2004]. The CORPRAL system operates in a research mode where its performance can be
evaluated step-wise on both synthesized patterns and actual plasmagram data, as well as
in a batch mode online with the RPI mission database to process newly acquired
plasmagrams arriving daily from Goddard Space Flight Center (NASA) and submit
extracted traces and resonances to the database where they are available for queries. This

chapter discusses various aspects of CORPRAL performance.

6.1. Performance Study

Table 6.1 summarizes the parameters that need to be determined for CORPRAL
operations. For each listed parameter, Table 6.1 provides a brief explanation how the
parameter changes the algorithm performance and a general concept of selecting the
optimal value. Sections of the Chapter 4 containing a more detailed description of the
algorithms are also given. The CORPRAL parameters are divided into four groups, (1)
AvTrend echo detection, (2) oriented edgel evaluation, (3) ANNA segment extraction,
and (4) perceptual grouping of segments. A suite of synthesized patterns was designed to
test robustness of the algorithms, study parameter sensitivity and determine optimal

settings for the CORPRAL.
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Table 6.1. CORPRAL parameters.

Name Symbol | Definition| Effect Considerations
AvTrend Echo Detection
1. Detection D Fig. 4.9 HigheD results in less signa
threshold
2. Detection N Fig. 4.9 SmalleN increases sensitivity Determines the scale of
window length to small features in the image analysis
Oriented Edgel Evaluation
3. Contextarea | ¢ Fig. 4.10 | Highet increases scale of | Smaller scale increases
radius analysis sensitivity to jitter; larger
scale looses detail
ANNA Segment Extraction
4. Rotor a 4.1 Highera causes smaller An estimate can be found in
misalignment factar contribution from poorly human vision research data
for long-distance aligned rotors
interaction
5. Attenuation with b 4.1,4.3 Higheb causes distant rotors R andb determine scale of
distance to contribute less analysis. Ris introduced
6. Long-distance | R - SmallerR decreases size of | for computational
cutoff radius co-axial pattern efficiency)
7. Short-distance | p 4.4 Smallep makes transaxial Needs to be large enough to
zone radius pattern smaller accommodate range jitter
8. Coaxial pattern| ® 44 Large® makes dead zone | An estimate can be found in
central angle smaller human vision research data
9. Annealing Tstart 4.2, SmallerT brings MFT neuron| Annealing scheme needs to
regime Tstop Fig.4.15 | closer to saturation areas of | be adaptive to avoid
temperatures sigmoid function premature saturation or
fading (Section 4.5.1)
10. Clustering L - LowerL causes merging of | Merging segments is done
threshold clusters of less alignment better at perceptual
grouping stage
Perceptual Grouping of Segments
11. Relative A 4.6 Higher: weighs smoothnessal
contribution of the connection over the gap
coefficient length
12. Gap scale D 4.6 HigherD attenuates
connection gap term
13. Score thresholdQ - HigherQ rejects more
connections

Robust performance of the algorithms on the imagery data of highly variable nature is

one of the greatest challenges of the computer vision models. Devising an algorithm that
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would be able to process a particular plasmagram correctly is an attainable task; using the
same algorithm to process successfully any other plasmagram remains a challenging task.
Robustness studies indicate that the greatest difficulty lies in adapting algorithms to the
variable scale of signatures. Though slow compared to computers, the natural vision
processor analyses the same input on multiple scales in parallel, selecting the highest
saliency among all scales. The current version of the CORPRAL is designed for
deployment on consumer-grade computing platforms that are not optimal for parallel
multiple scale analysis. Although single scale analysis is prone to errors, the adaptive and
optimizing qualities of CORPRAL help to accommodate typical range of the plasmagram
signature scales. Extension of our current approach to the multiple scale treatment of the
problem does not pose any difficulty in principle. Related to the issue of non-optimal
scale selection is the problem of insufficient resolution, corresponding to the case of
algorithm scale being larger than the feature scale. Robustness to the deviation from the
minimal scale and artifacts of low resolution were studied on a suite of synthesized

patterns.

6.1.1. ANNA Performance on Synthesized Patterns

Figure 6.1 shows a typical test pattern we use to study gap bridging and the noise
protection features of the ANNA segment extractor and perceptual grouping algorithm.
This pattern presents certain difficulty to the saliency calculation techniques, as it does
not comply with the constant curvature constraint of the Gestalt perception. Figure 6.1(a)
shows pattern of echoes (as resulted from the echo detection) created manually using the

interactive pattern editor of CORPRAL.
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Pixel resolution irx (frequency) ang (range) axes are shown in the upper right insert

of Figure 6.1(a). Using the simulated echo pattern, the edgels are obtained by selecting
their leading edge (lower pixel) as shown in Figure 6.1(b). Figures 6.1(c) and (d)
illustrate the rotor optimization process. Initial orientation of the edgels shows a few
errors due to the locality of the edgel processing, subsequently improved by the ANNA
algorithm. Using the optimized rotor pattern, contour segments are extracted as shown in
Figure 6.1(e), and the perceptual grouping algorithm is run to attempt their connection.
Thus the contours obtained, shown in Figure 6.1(f), pass final quality control that
evaluates smoothness, length, and percentage of gaps in each contour to reduce false
positives (Figure 6.1(g)). This result is shown in Figure 6.1(h) superimposed on the

original echo pattern.

Smaller scale of analysis can be set by decreasing context ared rafdibs angular
histogramming and adjusting coefficients and R regulating the attenuation of
contributions with distance in ANNA (see Table 6.1). Figure 6.2 illustrates how changes
of the analysis scale influence initial placement and optimization of rotors for the same
pattern as in Figure 6.1(c) and (d). Smaller scale affects ability to bridge gaps in larger
scale contours; larger scale results in engagement of all rotors, including those that are
not part of any contour. Subsequent processing compensates in part both problems:
perceptual grouping can bridge gaps in the smaller scale results, and segment clustering
avoids connecting false edgels in the larger scale data. Also, rotor optimization results
shown in Figure 6.1(d) and Figure 6.2(e) are obtained using an identical fixed annealing

regime with linearly decreasing temperattifeom 12 to 0.1 in 50 steps.
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Figure 6.2. Processing of the same pattern as in Figure 6.1 at
smaller (a-c) and larger (d-f) analysis scales.

Since the scale of optimization is larger in the latter case, a higher stopping temperature
can be used to avoid fast saturation of the neurons. Figure 6.3 illustrates the advantage of

selecting a more appropriate annealing regime with the stopping temperature of 4 instead
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of 0.1. Implementation of an algorithm for selecting the appropriate annealing regime
based on the choice of analysis scale and estimates of density of echoes allows good

performance at larger scales and low sensitivity to the selection of the scale par@meters
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Figure 6.3. Processing of the same pattern as in Figure 6.2(d) with a
more appropriate annealing regime (stop temperature
increased to prevent premature saturation due to a
larger scale of analysis).

Figure 6.4 shows another typical test pattern with two closely spaced traces that are
difficulty to separate for the saliency algorithms that are based on the static oriented
edgels, especially if the locality scale is not optimal. It can be seen from Figure 6.4.(c)
that orientations of many edgels are initially obtained incorrectly due to a strong
influence of the nearby contour, which would result in poor saliency calculations if it
were not for the rotor optimization processing, Figure 6.4(d). Analysis of another test
pattern containing a short weak contour in vicinity of a longer contour is illustrated in

Figure 6.5.
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Figure 6.4. Sample pattern containing two closely spaced traces with
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Figure 6.5. Processing of weak short contours in vicinity of a strong

contour.
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The test in Figure 6.5 was used to study the ability of ANNA to separate low-saliency
features in the presence of nearby high saliency features, which has been a known

difficulty of the static pattern saliency algorithms.

6.1.2. ANNA Performance on Plasmagram Data

Figure 6.6 illustrates the processing stages on the RPI plasmagram taken on March 1,
2002 00:02:58 UT. Raw plasmagram image is processed by the AvTrend adaptive echo
detection algorithm to select all pixels belonging to echoes arriving from remote plasma
structures (Figure 6.6(b)). Using detected echo data, edgel locations are evaluated, as
shown in Figure 6.6(c), and rotor initialization and optimization process is applied to
build the saliency map shown in Figure 6.6(d). Bottom-up clusterization is then used to
derive contour segments from the saliency map (Figure 6.6(e)). The perceptual grouping
algorithm is applied to chain qualifying segments together to form the traces shown in
Figure 6.6(f). All six found traces are then submitted to the RPI mission database as

expert knowledge data derived by CORPRAL.

6.2. Plasmagram Processing Results

The implemented version of CORPRAL works online with the RPI database of
telemetry, derived, and expert knowledge data [Gakial, 2001], delivering traces and
expert ratings from the ~600 plasmagram images arriving daily. The CORPRAL results
can be queried remotely from online BinBrowser workstations over the Internet to bring
up subsets of plasmagrams that contain traces. By March 1, 2004 CORPRAL has tagged

138,074 out of 842,674 plasmagrams.
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Figure 6.6. Example of processing stages for RPI plasmagram taken on
March 01, 2002 00:02:58 UT. The raw plasmagram (a) is
thresholded to obtain echoes (b), which are then reduced to the
edgels (c). The edgel orientations are obtained and optimized to
derive the saliency map (d) of the image. The saliency measures
are analyzed to obtain trace segments (e) that are then combined
together to form traces (f).
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Further insight into the subset of CORPRAL-selected plasmagrams can be achieved
by using the number of found traces as the query parameter. Figure 6.7 shows a sample
subset of plasmagrams taken in July 2001 that contain 6 traces or more. Querying one

month of ratings takes a few seconds to complete.

2001-Jul-25 17:38 UT “ 2001-Jul-09 03:47 UT
R =

001-Jul-26 22:06 UT
)

e

Figure 6.7. Some of July 2001 plasmagrams selected by CORPRAL as
containing 6 traces or more.
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CHAPTER 7. CONCLUSIONS AND OUTLOOK

In this chapter we summarize the main results of the thesis and discuss possible

directions for future research.

This work was originally inspired by the practical need of locating scientifically
significant data records in the large archive of RPI plasmagrams. The research eventually
sharpened its focus on robust performance of the pre-attentive vision models presented
with imagery data of highly variable content and quality. Based on previous results of
trace recognition in ionograms and early experiments with the RPI plasmagrams, the
choice of algorithmic approaches to the trace recognition was narrowed down to the
techniques that analyze edge elements (edgels) detected in theat@gerely looking
for subsets of edgels that form salient contours. Much effort was taken in this thesis to
identify weaknesses of saliency calculation approach that became apparent as we applied

it to the real-world data, and then to improve the method.

Low signal to noise ratio, range jitter, and discretization artifacts due to insufficient
resolution of the plasmagram images cause problems with the local estimate of edgel
orientation that is required for the saliency calculations. Errors in the edgel orientations
propagate to the saliency measures that are directly based on relative orientation of the
edgels and therefore are sensitive to imperfections of direction calculation. The major
improvement of the collective edgel analysis was achieved by allowing edgel orientations

to change in the process of iterative optimization of the edgel alignment. Edgels that can
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change orientation were nameators, in recognition of previously known studies of

rotor models that optimize mutual rotor alignments under the co-circularity restriction
governing the process of rotor interaction. The co-circularity restriction of the
conventional rotor models was then revised to reflect modern understanding of the pre-
attentive vision concepts that suggests existence of trans-axial pattern of interaction based
on simple parallelism and dead zones of interaction outside the co-axial pattern cone.
These modifications resulted in a remarkable enhancement of the algorithm performance
compared to both static edgel saliency calculators and classic rotor models. Further
studies suggested revision of the trans-axial pattern to better handle the range jitter in
plasmagrams and placement of the dead zones on the pre-synaptic rotors instead of the
central post-synaptic rotor to allow optimization process to correct errors in local
estimation of edgel orientation. Other enhancements were also suggested to avoid false
minima of the energy function of the optimizing neural network and to adapt simulating

annealing scheme to the image features.

Introduction of the rotor optimization layer in the perceptual analysis of salient
contours involves a significant increase of computations. Direct implementations of the
combinatorial optimization schemes that handle all detected edgels are rather exceptional
for the reason of high computational demand. An important part of this thesis was to find
a pre-processing scenario that would reduce the number of detected edgels in the image
with a minimal trade-off in terms of associated false negative and positive decisions.
Investigations of the available approaches to noise reduction showed that conventional

smoothing is inapplicable to plasmagrams because of its damaging effect on the traces
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that are commonly thin and faint, and an adaptive thresholding was chosen instead to

preserve only those features in plasmagram that stand out against the background.

Special attention in this thesis was given to the task of locating, identifying and then
the removal of the resonance signatures as a part of the plasmagram pre-processing.
Conventionally, the resonance processing employs a best-fit matching of the resonance
frequency model to the raw plasmagram image by testing a range of trial electron plasma
and cyclotron frequencies. The conventional approach failed to produce reliable results
because of specifics of the RPI scientific mission that exposes the instrument to highly
variable plasma and magnetic field conditions. A greater degree of robustness was
achieved by implementing a resonance signature detector to eliminate contributions from
the frequencies that do not display the anticipated decay of the resonance wave energy.
Additional performance enhancement was accomplished by setting contributions to the

fit proportional to the contrast of resonance signatures against the haakgro

All developed algorithms were implemented in a CORPRAL system that processes
RPI plasmagrams on a daily basis as they arrive from the IMAGE operations center at
Goddard SFC. The results of CORPRAL analysis are stored in the mission database that

can be queried with a variety of search criteria to select plasmagrams with signatures.

Pre-attentive vision has been drawing attention of researchers since the 1950s.
Understanding of visual information processing in the retina and brain cortex, a Nobel
Prize result, has spawned a generation of biologically plausible models replicating the
key components of this analysis. We plan to seek further enhancements of the

CORPRAL by bringing its design closer to the solutions developed over the million years
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of evolution. In particular, we are fascinated by the natural system of parallel analysis of
the same image at multiple scales with subsequent fusion of the results, a concept that
could provide robust detection of both spread and thin traces in plasmagrams. Noise
protection can be improved by complementing the facilitating interaction of the rotors
with the inhibitive counterpart that apparently has been discovered in the brain cortex.
Edgel analysis can be improved by implementing 2D techniques that analyze data
integrity across frequencies. It must be beneficial to preserve a greater amount of image
information in rotors (such as edge gradient, color, scale width) so that their interaction
can be made more efficient. Other optimization vehicles, such as the linear threshold
neural networks, should be attempted to make use of the expanded set of edgel
characteristics. Alternative combinatorial techniques can be studied for the task of
compilation of aligned rotors into contour segments. Finally, the segment grouping
algorithms can be improved by introducing higher order interpolating functions to
evaluate the segment connection score. These measures shall prepare us for the next
important step in our research, modeling of the attention-driven recognition of contours

in images.
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